• Title/Summary/Keyword: Web Contents Mining

Search Result 72, Processing Time 0.025 seconds

Comparison of Readability between Documents in the Community Question-Answering (질의응답 커뮤니티에서 문서 간 이독성 비교)

  • Mun, Gil-Seong
    • The Journal of the Korea Contents Association
    • /
    • v.20 no.10
    • /
    • pp.25-34
    • /
    • 2020
  • Community question and answering service is one of the main sources of information and knowledge in the Web. The quality of information in question and answer documents is determined by the clarity of the question and the relevance of the answers, and the readability of a document is a key factor for evaluating the quality. This study is to measure the quality of documents used in community question and answering service. For this purpose, we compare the frequency of occurrence by vocabulary level used in community documents and measure the readability index of documents by institution of author. To measure the readability index, we used the Dale-Chall formula which is calculated by vocabulary level and sentence length. The results show that the vocabulary used in the answers is more difficult than in the questions and the sentence length is longer. The gap in readability between questions and answers is also found by writing institution. The results of this study can be used as basic data for improving online counseling services.

A Customer Profile Model for Collaborative Recommendation in e-Commerce (전자상거래에서의 협업 추천을 위한 고객 프로필 모델)

  • Lee, Seok-Kee;Jo, Hyeon;Chun, Sung-Yong
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.5
    • /
    • pp.67-74
    • /
    • 2011
  • Collaborative recommendation is one of the most widely used methods of automated product recommendation in e-Commerce. For analyzing the customer's preference, traditional explicit ratings are less desirable than implicit ratings because it may impose an additional burden to the customers of e-commerce companies which deals with a number of products. Cardinal scales generally used for representing the preference intensity also ineffective owing to its increasing estimation errors. In this paper, we propose a new way of constructing the ordinal scale-based customer profile for collaborative recommendation. A Web usage mining technique and lexicographic consensus are employed. An experiment shows that the proposed method performs better than existing CF methodologies.

Analysis of Social Network According to The Distance of Characters Statements (소설 등장인물의 텍스트 거리를 이용한 사회 구성망 분석)

  • Park, Gyeong-Mi;Kim, Sung-Hwan;Cho, Hwan-Gue
    • The Journal of the Korea Contents Association
    • /
    • v.13 no.4
    • /
    • pp.427-439
    • /
    • 2013
  • With the fast development of complex science, lots of social networks are studied. We know that the social network is widely applied in analyzing issues in human culture, economics and web sciences. Recently we witness that some researchers began to compare the social network constructed from fiction literatures(literature social network) and the real social network obtained from practice. But we point that previous approaches for literature social network have some drawbacks since they completely depend on the biographical dictionary constructed for a designated literature. So since the previous approach focus on the few important characters and peoples around them, we can not understand the global structure of all characters appeared in the literature at least once. We propose one method to extract all characters appeared in the literature and how to make the social network from that information. Also we newly propose K-critical network by applying frequency of the named characters and the strength of relationship among all textual characters. Our experiment shows that the K-critical measure could be one crucial quantitative measure to compute the relationship strength among characters appeared in the object literature.

Analysis of Text Mining of Consumer's Personality Implication Words in Review of Used Transaction Application (중고거래 어플리케이션 <당근마켓> 리뷰텍스트에 나타난 소비자의 인성 함축단어 텍스트마이닝 분석)

  • Jung, Yea-Rin;Ju, Young-Ae
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.11
    • /
    • pp.1-10
    • /
    • 2021
  • This study analyzes the use and meaning of consumer personality implication words in the review text of the Used Transaction Application . From of May 2021, the data were collected for the past six months by our Web crawler in Seoul and Gyeonggi Province, and a total of 1368 cases were collected first by random sampling, and finally 570 cases were preprocessed. The results are as follows. First, 48.2% of review texts were related to the personality of consumers even though it was a commercial platform of products. Second, the review text is mainly positive, which formed a text network structure based on the keyword 'gratitude'. Third, the review text, which implies consumer character, was divided into two groups: 'extrovert personality' and 'introvert personality' of consumers. And the individuality of the two groups worked together on the platform. In conclusion, we would like to suggest that consumer personality plays an important role in the platform transaction process, that consumer personality will play a role in the services of the platform in the future, and that consumer personality should be studied from various perspectives.

Consumers Perceptions on Sodium Saccharin in Social Media (소셜미디어 분석을 통한 삭카린나트륨 소비자 인식 조사)

  • Lee, Sooyeon;Lee, Wonsung;Moon, Il-Chul;Kwon, Hoonjeong
    • Journal of Food Hygiene and Safety
    • /
    • v.30 no.4
    • /
    • pp.329-342
    • /
    • 2015
  • The purpose of this study was to investigate consumers' perceptions of sodium saccharin in social media. Data was collected from Naver blogs and Naver web communities (Korean representative portal web-site), and media reports including comment sections on a Yonhap news website (Korean largest news agency). The results from Naver blogs and Naver web communities showed that it was primarily mentioned 'sodium saccharin-no added' products, properties of sodium saccharin, and methods of reducing sodium saccharin in food. When media reported the expansion of food categories permitted to use sodium saccharin, search volume for sodium saccharin has increased in both PC and mobile search engines. Also, it was mainly commented about distrust of government, criticism of food product price, and distrust of food companies below the news on the news site. The label of sodium saccharin-no added products in market emphasized "no added-sodium saccharin". These results suggest that consumers are interested in sodium saccharin and especially when media reported the expansion of food categories permitted to use it. Consumers were able to search various information on sodium saccharin except safety or acceptable daily intake through social media. Therefore media or competent authority should report item on sodium saccharin with information including safety or acceptable daily intake based on scientific background and reference or experts' interview for consumers to get reliable information.

Intelligent VOC Analyzing System Using Opinion Mining (오피니언 마이닝을 이용한 지능형 VOC 분석시스템)

  • Kim, Yoosin;Jeong, Seung Ryul
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.3
    • /
    • pp.113-125
    • /
    • 2013
  • Every company wants to know customer's requirement and makes an effort to meet them. Cause that, communication between customer and company became core competition of business and that important is increasing continuously. There are several strategies to find customer's needs, but VOC (Voice of customer) is one of most powerful communication tools and VOC gathering by several channels as telephone, post, e-mail, website and so on is so meaningful. So, almost company is gathering VOC and operating VOC system. VOC is important not only to business organization but also public organization such as government, education institute, and medical center that should drive up public service quality and customer satisfaction. Accordingly, they make a VOC gathering and analyzing System and then use for making a new product and service, and upgrade. In recent years, innovations in internet and ICT have made diverse channels such as SNS, mobile, website and call-center to collect VOC data. Although a lot of VOC data is collected through diverse channel, the proper utilization is still difficult. It is because the VOC data is made of very emotional contents by voice or text of informal style and the volume of the VOC data are so big. These unstructured big data make a difficult to store and analyze for use by human. So that, the organization need to automatic collecting, storing, classifying and analyzing system for unstructured big VOC data. This study propose an intelligent VOC analyzing system based on opinion mining to classify the unstructured VOC data automatically and determine the polarity as well as the type of VOC. And then, the basis of the VOC opinion analyzing system, called domain-oriented sentiment dictionary is created and corresponding stages are presented in detail. The experiment is conducted with 4,300 VOC data collected from a medical website to measure the effectiveness of the proposed system and utilized them to develop the sensitive data dictionary by determining the special sentiment vocabulary and their polarity value in a medical domain. Through the experiment, it comes out that positive terms such as "칭찬, 친절함, 감사, 무사히, 잘해, 감동, 미소" have high positive opinion value, and negative terms such as "퉁명, 뭡니까, 말하더군요, 무시하는" have strong negative opinion. These terms are in general use and the experiment result seems to be a high probability of opinion polarity. Furthermore, the accuracy of proposed VOC classification model has been compared and the highest classification accuracy of 77.8% is conformed at threshold with -0.50 of opinion classification of VOC. Through the proposed intelligent VOC analyzing system, the real time opinion classification and response priority of VOC can be predicted. Ultimately the positive effectiveness is expected to catch the customer complains at early stage and deal with it quickly with the lower number of staff to operate the VOC system. It can be made available human resource and time of customer service part. Above all, this study is new try to automatic analyzing the unstructured VOC data using opinion mining, and shows that the system could be used as variable to classify the positive or negative polarity of VOC opinion. It is expected to suggest practical framework of the VOC analysis to diverse use and the model can be used as real VOC analyzing system if it is implemented as system. Despite experiment results and expectation, this study has several limits. First of all, the sample data is only collected from a hospital web-site. It means that the sentimental dictionary made by sample data can be lean too much towards on that hospital and web-site. Therefore, next research has to take several channels such as call-center and SNS, and other domain like government, financial company, and education institute.

A Public-oriented e-marketplace Framework for the Mining Industry (광산업의 B2B 공적 e-Marketplace 프레임워크 구축에 관한 연구)

  • Park, Ki-Nam
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.11 no.5
    • /
    • pp.53-61
    • /
    • 2006
  • We propose public-oriented e-Marketplace framework construction that activates efficiently transaction of non-metal industrial resources through the case of Mineralland. The firms of Non-metal industrial resources domain have low information level and weak capital structure. So public enterprise has to construct e-marketplace to trade using exact market information. This framework consists of five domains-contents, commerces, communities, collaboration and electronic authentication. To draw this framework, we review many web-sites and literatures about B2B of industrial resources domain. In addition, this study provides practical implications and guidelines for activating public oriented e-Marketplace of non metal industrial resources.

  • PDF

Analysis of Twitter for 2012 South Korea Presidential Election by Text Mining Techniques (텍스트 마이닝을 이용한 2012년 한국대선 관련 트위터 분석)

  • Bae, Jung-Hwan;Son, Ji-Eun;Song, Min
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.3
    • /
    • pp.141-156
    • /
    • 2013
  • Social media is a representative form of the Web 2.0 that shapes the change of a user's information behavior by allowing users to produce their own contents without any expert skills. In particular, as a new communication medium, it has a profound impact on the social change by enabling users to communicate with the masses and acquaintances their opinions and thoughts. Social media data plays a significant role in an emerging Big Data arena. A variety of research areas such as social network analysis, opinion mining, and so on, therefore, have paid attention to discover meaningful information from vast amounts of data buried in social media. Social media has recently become main foci to the field of Information Retrieval and Text Mining because not only it produces massive unstructured textual data in real-time but also it serves as an influential channel for opinion leading. But most of the previous studies have adopted broad-brush and limited approaches. These approaches have made it difficult to find and analyze new information. To overcome these limitations, we developed a real-time Twitter trend mining system to capture the trend in real-time processing big stream datasets of Twitter. The system offers the functions of term co-occurrence retrieval, visualization of Twitter users by query, similarity calculation between two users, topic modeling to keep track of changes of topical trend, and mention-based user network analysis. In addition, we conducted a case study on the 2012 Korean presidential election. We collected 1,737,969 tweets which contain candidates' name and election on Twitter in Korea (http://www.twitter.com/) for one month in 2012 (October 1 to October 31). The case study shows that the system provides useful information and detects the trend of society effectively. The system also retrieves the list of terms co-occurred by given query terms. We compare the results of term co-occurrence retrieval by giving influential candidates' name, 'Geun Hae Park', 'Jae In Moon', and 'Chul Su Ahn' as query terms. General terms which are related to presidential election such as 'Presidential Election', 'Proclamation in Support', Public opinion poll' appear frequently. Also the results show specific terms that differentiate each candidate's feature such as 'Park Jung Hee' and 'Yuk Young Su' from the query 'Guen Hae Park', 'a single candidacy agreement' and 'Time of voting extension' from the query 'Jae In Moon' and 'a single candidacy agreement' and 'down contract' from the query 'Chul Su Ahn'. Our system not only extracts 10 topics along with related terms but also shows topics' dynamic changes over time by employing the multinomial Latent Dirichlet Allocation technique. Each topic can show one of two types of patterns-Rising tendency and Falling tendencydepending on the change of the probability distribution. To determine the relationship between topic trends in Twitter and social issues in the real world, we compare topic trends with related news articles. We are able to identify that Twitter can track the issue faster than the other media, newspapers. The user network in Twitter is different from those of other social media because of distinctive characteristics of making relationships in Twitter. Twitter users can make their relationships by exchanging mentions. We visualize and analyze mention based networks of 136,754 users. We put three candidates' name as query terms-Geun Hae Park', 'Jae In Moon', and 'Chul Su Ahn'. The results show that Twitter users mention all candidates' name regardless of their political tendencies. This case study discloses that Twitter could be an effective tool to detect and predict dynamic changes of social issues, and mention-based user networks could show different aspects of user behavior as a unique network that is uniquely found in Twitter.

The Effect of Expert Reviews on Consumer Product Evaluations: A Text Mining Approach (전문가 제품 후기가 소비자 제품 평가에 미치는 영향: 텍스트마이닝 분석을 중심으로)

  • Kang, Taeyoung;Park, Do-Hyung
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.1
    • /
    • pp.63-82
    • /
    • 2016
  • Individuals gather information online to resolve problems in their daily lives and make various decisions about the purchase of products or services. With the revolutionary development of information technology, Web 2.0 has allowed more people to easily generate and use online reviews such that the volume of information is rapidly increasing, and the usefulness and significance of analyzing the unstructured data have also increased. This paper presents an analysis on the lexical features of expert product reviews to determine their influence on consumers' purchasing decisions. The focus was on how unstructured data can be organized and used in diverse contexts through text mining. In addition, diverse lexical features of expert reviews of contents provided by a third-party review site were extracted and defined. Expert reviews are defined as evaluations by people who have expert knowledge about specific products or services in newspapers or magazines; this type of review is also called a critic review. Consumers who purchased products before the widespread use of the Internet were able to access expert reviews through newspapers or magazines; thus, they were not able to access many of them. Recently, however, major media also now provide online services so that people can more easily and affordably access expert reviews compared to the past. The reason why diverse reviews from experts in several fields are important is that there is an information asymmetry where some information is not shared among consumers and sellers. The information asymmetry can be resolved with information provided by third parties with expertise to consumers. Then, consumers can read expert reviews and make purchasing decisions by considering the abundant information on products or services. Therefore, expert reviews play an important role in consumers' purchasing decisions and the performance of companies across diverse industries. If the influence of qualitative data such as reviews or assessment after the purchase of products can be separately identified from the quantitative data resources, such as the actual quality of products or price, it is possible to identify which aspects of product reviews hamper or promote product sales. Previous studies have focused on the characteristics of the experts themselves, such as the expertise and credibility of sources regarding expert reviews; however, these studies did not suggest the influence of the linguistic features of experts' product reviews on consumers' overall evaluation. However, this study focused on experts' recommendations and evaluations to reveal the lexical features of expert reviews and whether such features influence consumers' overall evaluations and purchasing decisions. Real expert product reviews were analyzed based on the suggested methodology, and five lexical features of expert reviews were ultimately determined. Specifically, the "review depth" (i.e., degree of detail of the expert's product analysis), and "lack of assurance" (i.e., degree of confidence that the expert has in the evaluation) have statistically significant effects on consumers' product evaluations. In contrast, the "positive polarity" (i.e., the degree of positivity of an expert's evaluations) has an insignificant effect, while the "negative polarity" (i.e., the degree of negativity of an expert's evaluations) has a significant negative effect on consumers' product evaluations. Finally, the "social orientation" (i.e., the degree of how many social expressions experts include in their reviews) does not have a significant effect on consumers' product evaluations. In summary, the lexical properties of the product reviews were defined according to each relevant factor. Then, the influence of each linguistic factor of expert reviews on the consumers' final evaluations was tested. In addition, a test was performed on whether each linguistic factor influencing consumers' product evaluations differs depending on the lexical features. The results of these analyses should provide guidelines on how individuals process massive volumes of unstructured data depending on lexical features in various contexts and how companies can use this mechanism from their perspective. This paper provides several theoretical and practical contributions, such as the proposal of a new methodology and its application to real data.

A Literature Review and Classification of Recommender Systems on Academic Journals (추천시스템관련 학술논문 분석 및 분류)

  • Park, Deuk-Hee;Kim, Hyea-Kyeong;Choi, Il-Young;Kim, Jae-Kyeong
    • Journal of Intelligence and Information Systems
    • /
    • v.17 no.1
    • /
    • pp.139-152
    • /
    • 2011
  • Recommender systems have become an important research field since the emergence of the first paper on collaborative filtering in the mid-1990s. In general, recommender systems are defined as the supporting systems which help users to find information, products, or services (such as books, movies, music, digital products, web sites, and TV programs) by aggregating and analyzing suggestions from other users, which mean reviews from various authorities, and user attributes. However, as academic researches on recommender systems have increased significantly over the last ten years, more researches are required to be applicable in the real world situation. Because research field on recommender systems is still wide and less mature than other research fields. Accordingly, the existing articles on recommender systems need to be reviewed toward the next generation of recommender systems. However, it would be not easy to confine the recommender system researches to specific disciplines, considering the nature of the recommender system researches. So, we reviewed all articles on recommender systems from 37 journals which were published from 2001 to 2010. The 37 journals are selected from top 125 journals of the MIS Journal Rankings. Also, the literature search was based on the descriptors "Recommender system", "Recommendation system", "Personalization system", "Collaborative filtering" and "Contents filtering". The full text of each article was reviewed to eliminate the article that was not actually related to recommender systems. Many of articles were excluded because the articles such as Conference papers, master's and doctoral dissertations, textbook, unpublished working papers, non-English publication papers and news were unfit for our research. We classified articles by year of publication, journals, recommendation fields, and data mining techniques. The recommendation fields and data mining techniques of 187 articles are reviewed and classified into eight recommendation fields (book, document, image, movie, music, shopping, TV program, and others) and eight data mining techniques (association rule, clustering, decision tree, k-nearest neighbor, link analysis, neural network, regression, and other heuristic methods). The results represented in this paper have several significant implications. First, based on previous publication rates, the interest in the recommender system related research will grow significantly in the future. Second, 49 articles are related to movie recommendation whereas image and TV program recommendation are identified in only 6 articles. This result has been caused by the easy use of MovieLens data set. So, it is necessary to prepare data set of other fields. Third, recently social network analysis has been used in the various applications. However studies on recommender systems using social network analysis are deficient. Henceforth, we expect that new recommendation approaches using social network analysis will be developed in the recommender systems. So, it will be an interesting and further research area to evaluate the recommendation system researches using social method analysis. This result provides trend of recommender system researches by examining the published literature, and provides practitioners and researchers with insight and future direction on recommender systems. We hope that this research helps anyone who is interested in recommender systems research to gain insight for future research.