• Title/Summary/Keyword: Weathering rate

Search Result 111, Processing Time 0.024 seconds

Effects of salt crystallization on stone durability (염분의 결정화 현상이 석재 내구성에 끼치는 영향)

  • 김성수
    • Economic and Environmental Geology
    • /
    • v.32 no.2
    • /
    • pp.203-208
    • /
    • 1999
  • The main objective of this study is to suggest a new assessment method of the influence of weathering due to salt crystallization on the engineering property of rock. For this purpose, various sources of salt and salt crystallization were investigated, and artificially accelerated weathering tests were carried out. In natural envionment, weathering rate is very slow and weathering process involves complex mechanisms. Therefore artificial weathering test is essential for systematic analysis. Arificial weathering test is defined as test which controls weathering rate and agents by controlling arificial environmental condition. In this study, salt crystallization test was selected among various artificial weathering test methods, for its important role in weathering. Change of various stone properties were detexted. The change of physical properties by salt crystallization were observed as follows : 72% in Brazilian tensile strength and 72% in Slake durability. These results explain the importance of salt crystallization in the mechanical behaviour and properties of stone.

  • PDF

Initial Stage of Atmospheric Corrosion of Carbon and Weathering Steels in Thailand Climate

  • Nii, K.;Bhamornsut, C.;Chotimongkol, L.;Vutivat, E.;Nakkhuntod, R.;Jeenkhajohn, P.;Suphonlai, S.
    • Corrosion Science and Technology
    • /
    • v.2 no.4
    • /
    • pp.183-188
    • /
    • 2003
  • Corrosion of carbon and weathering steels were evaluated under 3 environmental exposures in Thailand (urban, rural and marine) for a year. The seasonal study was designed to determine different corrosion mechanisms by 6 months of dry season and 6 months of rainy season in a year. The sheltered exposure racks were used to determine the washing effect of min. At each site, climatic and pollutants analyses were carried out. The present study showed that the difference in corrosion rates of carbon and weathering steels was not so distinguished in both rural (AIT) and urban (TISTR) environments. The corrosion rate of weathering steel was somewhat lower than that of carbon steel and the decreasing tendency of corrosion rate with time was slightly higher for weathering steel than for carbon steel. In marine (Rayong) environment, the corrosion rate was higher and the effect of wet and dry seasons was observed. The corrosion rate in 6 dry months was higher for direct exposure than for sheltered exposure. However, in 6 rainy months. the corrosion rate of sheltered exposure was higher than that of direct exposure. In direct exposure for I year, that is, the first 6 dry months and the next 6 rainy months, the corrosion rate decreased with time. but in sheltered exposure, the corrosion rate did not decrease with time. instead, increased in the next 6 rainy months. This indicated that the protect ive layer formed in the first 6 dry months could be destroyed by high deposition of chloride to r sheltered exposure in the next 6 rainy months; whereas the rust layer for direct exposure could be kept sound due to washing effect in rainy season, even though the deposition rate of chloride was almost the same for direct and sheltered exposures. In marine environment, the weathering steel showed higher corrosion resistance than carbon steel but its corrosion rate was higher than those in other environments.

A Study on Corrosion Failure of a Weathering Steel Weldment with Various Applied Potentials in Acid-chloride Solution (산-염소이온 분위기의 인자전위에 따른 내후성강 용접부의 부식파괴에 관한 연구)

  • 최윤석;김정구;김종집;이병훈
    • Journal of Welding and Joining
    • /
    • v.18 no.3
    • /
    • pp.97-105
    • /
    • 2000
  • The stress corrosion cracking(SCC) and hydrogen embrittlement cracking(HEC) characteristics of a weathering steel weldment were investigated in aerated acid-chloride solution. The electrochemical properties of weldment were investigated by polarization test and galvanic corrosion test. Weathering steel did not show passive behavior in the acid-chloride solution. Galvanic corrosion between the weld metal and the base metal was not observed because the base metal was anodic to the weld metal. The slow-strain-rate tests(SSRT0 were conducted at a constant strain rate o 7.87×{TEX}$10^{-7}${/TEX}/s at corrosion potential, and at potentiostatically controlled anodic and cathodic potentials. The weldment of weathering steel was susceptible to both anodic dissolution SCC and hydrogen evolution HEC.

  • PDF

Effects of Evaporation on the Weathering Rate and Chemical Composition of Iranian Heavy Crude Oil (이란산 원유의 증발에 따른 풍화율 및 화학적 성상 변화)

  • Kim, Beom;Kim, Gi-Beum;Sim, Won-Joon;Yim, Un-Hyuk
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.15 no.3
    • /
    • pp.238-246
    • /
    • 2012
  • Once oil is spilled into marine environment, it experiences various weathering processes among which evaporation is the most dominant process in the initial stage of weathering. This study aimed to elucidate the effects of evaporation on the physicochemical properties of spilled oil using standardized laboratory experiments. Laboratory evaporation process was successfully reproduced using controlled rotary evaporation method. In case of Iranian Heavy crude (IHC), evaporation rate after 48 hours was $29.3{\pm}0.4%$ (n=40, p<0.001). Evaporation was simulated using ADIOS2 weathering model and the result was in agreement with laboratory experiment. Chemical composition changes of petroleum hydrocarbons including alkanes, polycyclic aromatic hydrocarbons (PAHs) and biomarkers by evaporation rate were also analyzed. As oil evaporated, low molecular weight alkanes and PAHs decreased, while biomakers showed conservative characteristics. Among biomarkers, $17{\alpha}(H)$, $21{\beta}(H)$-hopane was used for calculation of weathering rates, which matched with evaporative mass losses. Weathering rate calculation using hopane showed that stranded oils of weathering stage I (28.9%) and mesocosm oil weathering experiment till 5 days (26.5%) were mainly affected by evaporation process.

Hydrogeochemical Research on the Characteristic of Chemical Weathering in a Granitic Gatchment (水文化學的 資料를 통한 花崗岩質 流域의 化學的 風化特性에 關한 硏究)

  • Park, Soo-Jin
    • Journal of the Korean Geographical Society
    • /
    • v.28 no.1
    • /
    • pp.1-15
    • /
    • 1993
  • This research aims to investigate some respects of chemical weathering processes, espcially the amount of solute leaching, formation of clay minerals, and the chemical weathering rate of granite rocks under present climatic conditions. For this purpose, I investigated geochemical mass balance in a small catchment and the mineralogical composition of weathered bedrocks including clay mineral assemblages at four res-pective sites along one slope. The geochemical mass blance for major elements of rock forming minerals was calculated from precipitation and streamwater data which are measured every week for one year. The study area is a climatically and litholo-gically homogeneous small catchment($3.62Km^2$)in Anyang-shi, Kyounggi-do, Korea. The be-drock of this area id Anyang Granite which is composed of coarse-giained, pink-colored miner-als. Main rock forming minerals are quartz, K-Feldspar, albite, and muscovite. One of the chracteristics of this granite rock is that its amount of Ca and Mg is much lower than other granite rock. The leaching pattern in the weathering profiles is in close reltion to the geochemical mass balance. Therefore the removal or accumulation of dissolved materials shows weathering patterns of granite in the Korean peninsula. Oversupplied ions into the drainage basin were $H^+$, $K^+$, Fe, and Mn, whereas $Na^2+$, $Mg^2+$, $Ca^2+$, Si, Al and $HCO-3^{-}$ were removed from the basin by the stream. The consumption of hydrogen ion in the catchment implies the hydrolysis of minerals. The surplus of $K^+$ reflects that vegetation is in the aggravation stage, and the nutrient cycle of the forest in study area did not reach a stable state. And it can be also presumed that the accumulation of $K^+$ in the top soil is related to the surplus of $K^+$. Oversupplied Fe and Mn were presumed to accumulate in soil by forming metallic oxide and hydroxide. In the opposite, the removal of $Na^+$, Si, Al resulted from the chemical weathering of albite and biotite, and the amount of removal of $Na^+$, Si, Al reflected the weathering rate of the bedrock. But $Ca^2+$ and $Mg^2+$ in stream water were contaminated by the scattered calcareous structures over the surface. Kaolinite is a stable clay mineral under the present environment by the thermodynamical analysis of the hydrogeochemical data and Tardy's Re value. But this result was quite different from the real assemblage of clay miner-als in soil and weathered bedrock. This differ-ence can be explained by the microenvironment in the weathering profile and the seasonal variation of climatic factors. There are different clay forming environments in the stydy area and these differences originate from the seasonal variation of climate, especially the flushing rate in the weathering profile. As it can be known from the results of the analysis of thermodynamic stability and characteristics of geochemical mas balance, the climate during winter and fall, when it is characterized by the low flushing rate and high solute influx, shows the environmental characteristics to from 2:1 clay minerals, such as illite, smectite, vermiculite and mixed layer clay minerals which are formed by neoformation or transformation from the primary or secondary minerals. During the summer and spring periods, kaoli-nite is a stable forming mineral. However it should consider that the other clay minerals can transformed into kaolinite or other clay minerals, because these periods have a high flushing rte and temperature. Materials which are directly regulated by chemical weathering in the weathered bedrock are $Na^+$, Si, and Al. The leaching of Al is, however, highly restricted and used to form a clay mineral, and that of Si falls under the same category. $Na^+$ is not taked up by growing veget ation, and fixed in the weathering profile by forming secondary minerals. Therefore the budget of $Na^+$ is a good indicator for the chemical weathering rate in the study area. The amount of chemical weathering of granite rocks was about 31.31g/$m^2+$/year based on $Na^+$ estimation.

  • PDF

Weathering of coal and kerogen : implications on the geochmical carbon and oxygen cycle and the environmental geochemical reactions (탄질 유기물과 케로젠의 풍화 : 탄소와 산소의 지화학적 순환 및 환경화학적 반응에 미치는 영향)

  • 장수범
    • Economic and Environmental Geology
    • /
    • v.32 no.1
    • /
    • pp.101-111
    • /
    • 1999
  • Sedimentary organic matter, exposed to continental surficial environment, reacts with oxygen supplied from the atmosphee and forms carbon-containing oxidation products. Knowledge of the rate and mechanisms of sedimentary organic matter weathering is important because it is one of the major controls on atmospheric oxygen level through geologic time. Under the abiological conditions, the oxidation rate of coal organic matter by molecular oxygen is enhanced by the increase of oxygen concentration and temperature. At ambient temperature and pressure, aqueous coal oxidation results in the formation of dissolved $CO_2$ dissolved organic carbon and solid oxidation products which are all quantitatively significant reaction products. The effects of pH, ultraviolet light, and microbial activity on the weathering of sedimentary organic matter are poorly contrained. Based on the results of geochmical and environmental studies, it is believed that the photochemical reaction should play an important role in the decomposition and oxidation of sedimentary organic matter removed from the weathering profile. At higher pH conditions, the production rate of DOC can be accelerated due to base catalysis. These high molecular weight oranic matter can react with man-made pollutants such as heavy metal ions via adsorption/desorption or ion exchange reactions. The effect of microbial activity on the oxidative weathering of sedimentary organic matter is poorly understood and remains to be studied.

  • PDF

Atmospheric Corrosion Behavior of Weathering Steel Exposed to the Outdoors for 10 Years in Korea

  • Yoo, Y.R.;Choi, S.H.;Kim, Y.S.
    • Corrosion Science and Technology
    • /
    • v.21 no.4
    • /
    • pp.258-272
    • /
    • 2022
  • Steel structures exposed to the outdoors experienced several types of corrosion, which may reduce their thickness. Since atmospheric corrosion can induce economic losses, it is important to consider the atmospheric corrosion behavior of a variety of metals and alloys. This work performed outdoor exposure tests for 10 years at 14 areas in Korea and calculated the atmospheric corrosion rate of weathering steel. This paper discussed the atmospheric corrosion behavior of weathering steel based on various corrosion factors. The average corrosion rates in coastal, industrial, urban, and rural areas were found to range from (2.83 to 4.23) ㎛/y, (2.99 to 4.23) ㎛/y, (1.72 to 3.14) ㎛/y, and (1.57 to 2.85) ㎛/y respectively. It should be noted that the maximum corrosion rate was about 6.0 times greater than the average corrosion rate. Regardless of the exposure sites, the color differences were increased, but the glossiness was reduced and there was no relationship between the corrosion rate and environmental factors and the glossiness.

Development of radioactive prospecting as tool for evaluating degree of granitic rocks weathering

  • Ishida Satoshi;Tsuchihara Takeo;Imaizumi Masayuki;Ohnishi Ryouichi
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.416-421
    • /
    • 2003
  • To develop an easy, low-cost method for evaluating the degree of weathering by radioactive prospecting, radioactive prospecting and the investigation of the degree of weathering were carried out in the southern Kitakami massif of Iwate Prefecture, Japan, in which weathering granitic rocks was distributed. Fifty outcrops in the study area were selected, and strength of the gamma-rays emitted from the weathering bedrock of $^{40}K,\;^{214}Bi,\;and\;^{208}Tl$ was measured for 15 minutes at each point. At the same points, soil hardness was measured on the surface of the outcrop with a Yamanaka soil penetration tester. In addition, 100cc samples of each outcrop were taken with the sampler. The samples were analyzed by XRD, and the kind of the rock-forming minerals containing K was identified. We then compared the degree of weathering and the radioactive prospecting results by using K as an indicator. The relation between $^{40}K/^{208}Tl$ gamma rays counting rate by the radioactive prospecting and the hardness index showed a positive correlation as a result of the investigation, and the correlation coefficient ($R^2$) was 0.67.Moreover, when $^{40}K/^{208}Tl$ gamma rays counting rate emitted from the bedrock was low, the number of rock-forming mineral species containing K was also low. Thus, it was found that $^{40}K/^{208}Tl$ gamma rays counting rate measured by the radioactive prospecting could be used as an indicator of the degree of weathering.

  • PDF

Protective Ability Index of Rust Layer Formed on Weathering Steel Bridge

  • Hara, S.;Kamimura, T.;Miyuki, H.;Yamashita, M.;Uchida, H.
    • Corrosion Science and Technology
    • /
    • v.6 no.3
    • /
    • pp.128-132
    • /
    • 2007
  • For a quantitative inspection on the performance of weathering steel bridges, we have investigated the relationship between the corrosion rate and the composition of the rust layers formed on weathering steel bridges located in various environments in Japan and applied a protective ability index (PAI) to the bridges. The corrosion rates were clearly classified by the PAI, ${\alpha}/{\gamma}*$ and sub index of $({\beta}+s)/{\gamma}*$, where $\alpha$, \gamma*, $\beta$ and s are the mass ratio of crystalline $\alpha-FeOOH$, the total of $\gamma$-FeOOH+ $\beta$-FeOOH + the spinel-type iron oxide (mainly $Fe_3O_4$), $\beta-FeOOH$ and spinel-type iron oxide, analyzed by powder X-ray diffraction, respectively. In the case of ${\alpha}/{\gamma}$*>1, the rust layer works protective enough to reduce the corrosion rate less than 0.01 mm/y. The sub index $({\beta}+s)/{\gamma}*$<0.5 or >0.5 classifies the corrosion rate of the non-protective rust layers, therefore the former state of the rust layer terms inactive and the latter terms active. The quantitative inspection of a weathering steel bridge requires a performance-inspection (PI) and periodical deteriorationinspections (DI). The PI can be completed by checking of the PAI, ${\alpha}/{\gamma}*$. The DI on the weathering steel bridges where deicing salt is sprinkled can be performed by checking the PAI, $({\beta}+s)/{\gamma}*$.

Reaction Path Modeling of Granitic Cultural Properties and Its Implication for Preservation (화강암질 석조문화재의 풍화반응경로 특성과 보존에 대한 제언)

  • Park Maeng-Eon;Sung Kyu-Youl
    • Journal of the Mineralogical Society of Korea
    • /
    • v.18 no.2
    • /
    • pp.83-92
    • /
    • 2005
  • Dissolution rate of minerals may differ from climates configuration, but weathering rate of feldspars is generally proved to be relatively higher The result of geochemical reaction modeling indicates the acid water of pH 4.5 excluding any other variables, was 2.3 times higher than that in ordinary rain of pH 5.7. This result proved that pH is very important factor in preservation of granite cultural properties. To prevent the weathering of stone cultural properties, weathering characteristics of stones should be studied first and constitution of dry environments, using water repellent or oil coating, isolating water which cause chemical weathering reaction like hydration and oxidization should be considered. Considering the long-term reactions between granite and rain, selection of materials, which can bring neutralization and non-oxidization conditions, are very important in using cleaning agents and biological controls.