DOI QR코드

DOI QR Code

Effects of Evaporation on the Weathering Rate and Chemical Composition of Iranian Heavy Crude Oil

이란산 원유의 증발에 따른 풍화율 및 화학적 성상 변화

  • Kim, Beom (Oil and POPs Research Group, South Sea Research Institute, KIOST) ;
  • Kim, Gi-Beum (Department of Marine Environmental Engineering, Gyeongsang National University) ;
  • Sim, Won-Joon (Oil and POPs Research Group, South Sea Research Institute, KIOST) ;
  • Yim, Un-Hyuk (Oil and POPs Research Group, South Sea Research Institute, KIOST)
  • 김범 (한국해양과학기술원 유류 및 유해물질연구단) ;
  • 김기범 (국립경상대학교 해양환경공학과) ;
  • 심원준 (한국해양과학기술원 유류 및 유해물질연구단) ;
  • 임운혁 (한국해양과학기술원 유류 및 유해물질연구단)
  • Received : 2012.06.12
  • Accepted : 2012.06.25
  • Published : 2012.08.25

Abstract

Once oil is spilled into marine environment, it experiences various weathering processes among which evaporation is the most dominant process in the initial stage of weathering. This study aimed to elucidate the effects of evaporation on the physicochemical properties of spilled oil using standardized laboratory experiments. Laboratory evaporation process was successfully reproduced using controlled rotary evaporation method. In case of Iranian Heavy crude (IHC), evaporation rate after 48 hours was $29.3{\pm}0.4%$ (n=40, p<0.001). Evaporation was simulated using ADIOS2 weathering model and the result was in agreement with laboratory experiment. Chemical composition changes of petroleum hydrocarbons including alkanes, polycyclic aromatic hydrocarbons (PAHs) and biomarkers by evaporation rate were also analyzed. As oil evaporated, low molecular weight alkanes and PAHs decreased, while biomakers showed conservative characteristics. Among biomarkers, $17{\alpha}(H)$, $21{\beta}(H)$-hopane was used for calculation of weathering rates, which matched with evaporative mass losses. Weathering rate calculation using hopane showed that stranded oils of weathering stage I (28.9%) and mesocosm oil weathering experiment till 5 days (26.5%) were mainly affected by evaporation process.

해양으로 유출된 유류는 다양한 풍화과정을 통해 환경에서 제거되며, 증발이 유출사고 초기에 가장 우세한 풍화과정이다. 본 연구에서는 허베이스피리트호 사고유 중 이란산 원유를 대상으로 실험실에서 표준화된 증발실험을 실시하여 시간에 따른 물리화학적 변화를 관찰하였다. 증발과정에 영향을 미치는 유막두께, 풍속 등의 변수를 제어하여 48시간까지 노출한 결과 $29.3{\pm}0.4%$의 재현성 있는 결과를 산출하였다(n=40, p<0.001). 미국해양대기청의 풍화모델인 ADIOS2를 이용하여 환경조건에서 증발을 시뮬레이션한 결과 29%의 증발율을 구할 수 있었으며, 본 실험과 일치하는 결과를 확인하였다. 증발율에 따른 원유의 조성변화를 분석한 결과 저분자량의 알칸과 PAHs가 제거되었으나, 바이오마커 화합물은 증발에 의한 영향을 받지 않는 보전적인 특성을 나타냈다. 바이오마커 중 $17{\alpha}(H)$, $21{\beta}(H)$-hopane을 이용한 풍화율 계산값은 48시간 최종 값이 24.4%로 물리적인 증발에 따른 양적변화와 유사한 결과를 보였다. 호판을 이용한 풍화율 계산값 비교결과 사고 초기 현장 표착유(1단계 풍화 28.9%)와 메소코즘 풍화 실험 5일차(26.5%)까지는 풍화과정이 주로 증발에 의한 것으로 확인되었다.

Keywords

References

  1. 국토해양부, 2010, 유류오염환경재해 평가 기술 개발, 1, 222.
  2. 해경백서, 2008, http://www.kcg.go.kr/main/user/cms/content. jsp?menuSeq=53.
  3. Bobra, M., 1992, A Study of the Evaporation of Petroleum Crude Oils, Manucsript Preport Number EE-135, Environment Canada, Ottawa, Ontario.
  4. Brutsaert, W., 1982, Evaporation into the Atomosphere, Reidel, Dordrecht, Holland.
  5. Fernandez-Varela, R., Andrade, J.M., Muniategui, S., Prada, D. and Ramirez-Villalobos, F., 2009, "The comparison of two heavy fuel oils in composition and weathering pattern, based on IR, GC-FID and GC-MS analyses: Application to the Prestige wreackage", Water Research, Vol. 43, 1015-1026. https://doi.org/10.1016/j.watres.2008.11.047
  6. Fieldhouse, B., Hollebone, B.P., Singh, N.R., Tong, T.S. and Mullin, J., 2010, "Artificial weathering of oils by rotary evaporator", 33th AMOP Technical seminar on Environmental Contamination and Response, Environment Canada, Ottawa, Ontario, Vol. 1, 159-180.
  7. Fingas, M., 1995, "A literature review of the physics and predictive modelling of oil spill evaporation", Journal of Hazardous Materials, Vol. 42, 157-175. https://doi.org/10.1016/0304-3894(95)00013-K
  8. Fingas, M., 1996, "The Evaporation of Oil Spills : Prediction of Equations Using Distillation Data", Spill science & Technology Bulletne, Vol. 3, No. 4, 191-192. https://doi.org/10.1016/S1353-2561(97)00009-1
  9. Fingas, M., 1997, "Studies on the Evaporation of Crude Oil and Petroleum Products: I. The Relationship Between Evapoation Rate and Time", Journal of Hazardous Materials, Vol. 56, 227-236. https://doi.org/10.1016/S0304-3894(97)00050-2
  10. Fingas, M., 2004, "Modeling evaporation using models that are not boundary-layer regulated", Journal of Hazardous Materials, Vol. 107, 27-36. https://doi.org/10.1016/j.jhazmat.2003.11.007
  11. Fingas, M., 2007, "Estimation of Oil Spill Behavior Parameters from Readily - Available Oil Properties", In Proceedings of the Thirtieth Arctic and Marine Oilspill Program Technical Seminar, Environment Canada, Ontario, 1-34.
  12. Hollebone, B., 2003, "Method for the Simulated Weathering of Oil and Petroleum Products", Environmental Technoloty Centre, Environment Canada, Ottawa, Ontraio, Method No.: ESTDOR- 02-0310.
  13. ITOPF, (The International Tanker Owners Pollution Federation Limited) http://www.itopf.com/information-services/data-andstatistics/ statistics/.
  14. Jones, F.E., 1992, "Evaporation of Water, with emphasis on applications and measurements", Lewis Publishers, Chelsea, Michigan.
  15. Jones, R.K., 1997, "A simplified pseudo-component oil evaporation model", Proceedings of the Twentieth Arctic and Marine Oil spill Program (AMOP) Technical Seminar, Environment Canada, Emergencies Science Division, Ottawa, Canada, 43-61.
  16. Joo, C.K., 2012, "A study on Environmental Fate of Crude Oil Using a Mesocosm", A Master degree thesis, Department of Marine Environmental, Engineering, Gyeongsang National Unversity, Tongyeng, Republic of Korea.
  17. Mackay, D. and Matsugu, R.S., 1973, "Evaporation rates of liquid hydrocarbon spills on land and water, Can", Journal of Chemical & Engineering, Vol. 51, 434-439.
  18. National Research Council (NRC), 2003, "Oil in the Sea III: inputs, fates, and effects", The National Academy press, Washington, DC.
  19. Petronet(한국석유공사 석유정보망), http://www.petronet.co.kr/ main2.jsp.
  20. Yim, U.H., Hong, S.H., Shim. W.J., Oh, J.R. and Chang, M., 2005, "Spatio-temporal distribution and characteristics of PAHs in sediments from Masan Bay, Korea", Marine Pollution Bul letin, Vol. 50, 319-326. https://doi.org/10.1016/j.marpolbul.2004.11.003
  21. Yim, U.H., Ha, S.Y., Ahn, J.G., Won, J.H., Han, G.M., Hong, S.H., Kim, M.K., Jung, J.H. and Shim, W.J. 2011, "Fingerprint and weathering characteristics of stranded oils after the Hebei Spirit oil spill", Journal of Hazardous Materials, Vol. 197, 60-69. https://doi.org/10.1016/j.jhazmat.2011.09.055
  22. Wang, Z., Fingas, M. and Li, K., 1994, "Frationation of a light crude-oil and identification and quantitation of aliphatic, aromatic, and biomarker compounds by GC-FID and GC-MS 1", Journal of Chromatographic Science, Vol. 32, 361-366. https://doi.org/10.1093/chromsci/32.9.361
  23. Wang, Z., Hollebone, B.P., Yang, C., Fingas, M., Landriault, M., Gamble, L., Peng, X. and Weaver, J., 2005, "Oil Composition and Properies for Oil Spill Modelling", In Proceedingsd of the Twenty-sixth Arctic and Marine Oilspill program Technical Seminar, Environment Canada, Owatta, Ontario, 93-112.