Browse > Article
http://dx.doi.org/10.14773/cst.2022.21.4.258

Atmospheric Corrosion Behavior of Weathering Steel Exposed to the Outdoors for 10 Years in Korea  

Yoo, Y.R. (Materials Research Center for Energy and Clean Technology, School of Materials Science and Engineering, Andong National University)
Choi, S.H. (Materials Research Center for Energy and Clean Technology, School of Materials Science and Engineering, Andong National University)
Kim, Y.S. (Materials Research Center for Energy and Clean Technology, School of Materials Science and Engineering, Andong National University)
Publication Information
Corrosion Science and Technology / v.21, no.4, 2022 , pp. 258-272 More about this Journal
Abstract
Steel structures exposed to the outdoors experienced several types of corrosion, which may reduce their thickness. Since atmospheric corrosion can induce economic losses, it is important to consider the atmospheric corrosion behavior of a variety of metals and alloys. This work performed outdoor exposure tests for 10 years at 14 areas in Korea and calculated the atmospheric corrosion rate of weathering steel. This paper discussed the atmospheric corrosion behavior of weathering steel based on various corrosion factors. The average corrosion rates in coastal, industrial, urban, and rural areas were found to range from (2.83 to 4.23) ㎛/y, (2.99 to 4.23) ㎛/y, (1.72 to 3.14) ㎛/y, and (1.57 to 2.85) ㎛/y respectively. It should be noted that the maximum corrosion rate was about 6.0 times greater than the average corrosion rate. Regardless of the exposure sites, the color differences were increased, but the glossiness was reduced and there was no relationship between the corrosion rate and environmental factors and the glossiness.
Keywords
Weathering steel; Atmospheric corrosion; Corrosion rate; Color difference; Glossiness;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 KS D ISO 9226, Corrosion of metals and alloys?corrosivity of atmospheres-determination of corrosion rate of standard specimens for the evaluation of corrosivity, Korean Industrial Standards (2003).
2 C. Chiavari, E. Bernardi, C. Martini, F. Passarini, F. Ospitali, L. Robbiola , The atmospheric corrosion of quaternary bronzes: The action of stagnant rain water, Corrosion Science, 52, 3002 (2010). Doi: https://doi.org/10.1016/j.corsci.2010.05.013   DOI
3 B. B. Wang, Z. Y. Wang, W. Han, W. Ke, Atmospheric corrosion of aluminium alloy 2024-T3 exposed to salt lake environment in Western China, Corrosion Science, 59, 63 (2012). Doi: https://doi.org/10.1016/j.corsci.2012.02.015   DOI
4 T. Kamimura, K. Kashima, K. Sugae, H. Miyuki, T. Kudo, The role of chloride ion on the atmospheric corrosion of steel and corrosion resistance of Sn-bearing steel, Corrosion Science, 62, 34 (2012). Doi: https://doi.org/10.1016/j.corsci.2012.04.049   DOI
5 Z. Dan, I. Muto, N. Hara, Effects of environmental factors on atmospheric corrosion of aluminium and its alloys under constant dew point conditions, Corrosion Science, 57, 22 (2012). Doi: https://doi.org/10.1016/j.corsci.2011.12.038   DOI
6 E. Diler, S. Rioual, B. Lescop, D. Thierry, B. Rouvellou, Chemistry of corrosion products of Zn and MgZn pure phases under atmospheric conditions, Corrosion Science, 65, 178 (2012). Doi: https://doi.org/10.1016/j.corsci.2012.08.014   DOI
7 I. O. Wallinder, C. Leygraf, Seasonal variations in corrosion rate and runoff rate of copper roofs in an urban and a rural atmospheric environment, Corrosion Science, 43, 2379 (2001). Doi: https://doi.org/10.1016/s0010-938x(01)00021-x   DOI
8 M. Yamashita, H. Miyuki, Y. Matsuda, H. Nagano, T. Misawa, The long-term growth of the protective rust layer formed on weathering steel by atmospheric corrosion during a quarter of a century, Corrosion Science, 36, 283 (1994). Doi: https://doi.org/10.1016/0010-938x(94)90158-9   DOI
9 M. Yamashita, T. Shimizu, H. Konishi, J. Mizuki, H. Uchida, Structure and protective performance of atmospheric corrosion product of Fe-Cr alloy film analyzed by Mossbauer spectroscopy and with synchrotron radiation X-rays, Corrosion Science, 45, 381 (2003). Doi: https://doi.org/10.1016/s0010-938x(02)00093-8   DOI
10 Q.C. Zhang, J.S. Wu, J.J. Wang, W.L. Zheng, J.G. Chen, A.B. Li, Corrosion behaviour of weathering steel in marine atmosphere, Materials chemistry and physics, 77, 603 (2002). Doi: https://doi.org/10.1016/S0254-0584(02)00110-4   DOI
11 S. Syed, Atmospheric corrosion of materials, Emirates Journal for Engineering Research, 11, 1 (2006).
12 Z. Wang, J. Liu, L. Wu, R. Han, Y. Sun, Study of the corrosion behavior of weathering steels in atmospheric environments, Corrosion Science, 67, 1 (2013). Doi: https://doi.org/10.1016/j.corsci.2012.09.020   DOI
13 M. Stratmann, H. Streckel, On the atmospheric corrosion of metals which are covered with thin electrolyte layers-II. experimental results, Corrosion Science, 30, 697 (1990). Doi: https://doi.org/10.1016/0010-938x(90)90033-2   DOI
14 T. Tsuru, A. Nishikata, J. Wang, Electrochemical studies on corrosion under a water film, Materials Science and Engineering, A198, 161 (1995). Doi: https://doi.org/10.1016/0921-5093(95)80071-2   DOI
15 Y. R. Yoo, S. H. Choi, and Y. S. Kim, Atmospheric Corrosion Behavior of Carbon Steel by the Outdoor Exposure Test for 10 Years in Korea, Corrosion Science and Technology, 21, 184 (2022). Doi: https://doi.org/10.14773/cst.2022.21.3.184   DOI
16 ISO 12944-2, Paints and varnishes - corrosion protection of steel structures by protective paint systems, ISO (2017).
17 Y. S. Kim, H. K. Lim, J. J. Kim, and Y. S. Park, Corrosivity of atmospheres in the Korean peninsula, Corrosion Science and Technology, 10, 109 (2011). Doi: https://doi.org/10.14773/cst.2011.10.4.109   DOI
18 V. Krivy, M. Kubzova, K. Kreislova, V. Urban, Characterization of Corrosion Products on Weathering Steel Bridges Influenced by Chloride Deposition, Metals, 7, 366 (2017). Doi: https://doi.org/10.3390/met7090336   DOI
19 R. W. Revie, Uhlig's Corrosion Handbook, 3rd ed., John Wiley & Sons Inc, New York (2000)
20 X. Chen, J. Dong, E. Han, W. Ke, Effect of Ni on the ion-selectivity of rust layer on low alloy steel, Mater Letters, 61, 4050 (2007). Doi: https://doi.org/10.1016/j.matlet.2007.01.014   DOI
21 J. Dong, E. Han, W. Ke, Review; introduction to atmospheric corrosion research in China, Science and Technology of Advanced Materials, 8, 559 (2007). Doi: https://doi.org/10.1016/j.stam.2007.08.010   DOI
22 D. de la Fuente, I. Diaz, J. Simancas, B. Chico and M. Morcillo, Long-Term atmospheric corrosion of mild steel, Corrosion Science, 53, 604 (2011). Doi: https://doi.org/10.1016/j.corsci.2010.10.007   DOI
23 S.J. Oh, D.C. Cook, H.E. Townsend, Atmospheric corrosion of different steels in marine, rural and industrial environments, Corrosion Science, 41, 1687 (1999). Doi: https://doi.org/10.1016/s0010-938x(99)00005-0   DOI
24 B.R. Meybaum, E.S. Ayllon, Characterization of atmospheric corrosion products on weathering steels, National Association of Corrosion Engineers, 36, 345 (1980). Doi: https://doi.org/10.5006/0010-9312-36.7.345   DOI
25 H. Tamura, The role of rusts in corrosion and corrosion protection of iron and steel, Corrosion Science, 50, 1872 (2008). Doi: https://doi.org/10.1016/j.corsci.2008.03.008   DOI
26 D.D.N. Singh, S. Yadav, J.K. Saha, Role of climatic conditions on corrosion characteristics of structural steels, Corrosion Science, 50, 93 (2008). Doi: https://doi.org/10.1016/j.corsci.2007.06.026   DOI
27 J.G. Castana, C.A. Botero, A.H. Restrepo, E.A. Agudelo, E. Correa, F. Echeverria, Atmospheric corrosion of carbon steel in Colombia, Corrosion Science, 52, 216 (2010). Doi: https://doi.org/10.1016/j.corsci.2009.09.006   DOI
28 S. Hoerle, F. Mazaudier, P. Dillmann, G. Santarini, Advances in understanding atmospheric corrosion of iron. II. Mechanistic modelling of wet-dry cycles, Corrosion Science, 46, 1431 (2004). Doi: https://doi.org/10.1016/j.corsci.2003.09.028   DOI
29 ISO 11664-4, Colorimetry - Part 4: CIE 1976 L*a*b* colour space, ISO, Geneva, Switzerland (2007).
30 S. Sharifzadeh, L. H. Clemmensen, C. Borggaard, S. Stoier, and B. K. Ersboll, Supervised feature selection for linear and non-linear regression of L* a* b* color from multispectral images of meat, Engineering Applications of Artificial Intelligence, 27, 211 (2014). Doi: https://doi.org/10.1016/j.engappai.2013.09.004   DOI
31 ASTM D 523, Standard test method for specular Gloss, ASTM (2018).
32 ISO 11664-6, Colorimetry - Part 6: CIEDE2000 colour-difference formula, ISO, Geneva, Switzerland (2013).
33 KS L 2405, Method of measurement for specular glossiness, Korean Industrial Standards (2011).