• Title/Summary/Keyword: Weathering depth

Search Result 98, Processing Time 0.024 seconds

Investigation into Weathering Degree and Shear Wave Velocity for Decomposed Granite in Hongsung (홍성 지역 화강 풍화 지층에 대한 풍화도 및 전단파 속도 고찰)

  • Sun, Chang-Guk;Kim, Bo-Hyun;Chung, Choong-Ki
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.10a
    • /
    • pp.360-372
    • /
    • 2005
  • The weathering degree and shear wave velocity, $V_S$, were evaluated for decomposed granite layers in Hongsung, where earthquake damages have occurred. The subsurface geological layers and their $V_S$ profiles were determined, respectively, from boring investigations and seismic tests such as crosshole, downhole and SASW tests. The subsurface layers were composed of 10 to 40 m thickness of weathered residual soil and weathered rock in most sites. In the laboratory, the weathering indexes with depth were estimated based on the results of X-ray fluorescence analysis using samples obtained from field, together with the dynamic soil properties determined from resonant column tests using reconstituted specimens. According to the results, it was examined that most weathering degrees represented such as VR, Li, CIA, MWPI and WIP were decreased with increasing depth with exception of RR and CWI. For weathered residual soils in Hongsung, the $V_S's$ determined from borehole seismic tests were slightly increased with increasing depth, and were similar to those from resonant column tests. Furthermore, the $V_S$ values were independent on the weathering degrees, which were decreased with depth.

  • PDF

Evaluation method for time-dependent corrosion depth of uncoated weathering steel using thickness of corrosion product layer

  • Kainuma, Shigenobu;Yamamoto, Yuya;Ahn, Jin-Hee;Jeong, Young-Soo
    • Structural Engineering and Mechanics
    • /
    • v.65 no.2
    • /
    • pp.191-201
    • /
    • 2018
  • The corrosion environments in a steel structure are significantly different depending on the individual parts of the members. To ensure the safety of weathering steel structures, it is important to evaluate the time-dependent corrosion behavior. Thus, the progress and effect of corrosion damage on weathering steel members should be evaluated; however, the predicted corrosion depth, which is affected by the corrosion environment, has not been sufficiently considered until now. In this study, the time-dependent thicknesses of the corrosion product layer were examined to quantifiably investigate and determine the corrosion depth of the corroded surface according to the exposure periods and corrosion environments. Thus, their atmospheric exposure tests were carried out for 4 years under different corrosion environments. The relationship between the thickness of the corrosion product layers and mean corrosion depth was examined based on the corrosion environment. Thus, the micro corrosion environments on the skyward and groundward surfaces of the specimens were monitored using atmospheric corrosion monitor sensors. In addition, the evaluated mean corrosion depth was calculated based on the thickness of the corrosion product layer in an atmospheric corrosion environment, and was verified through a comparison with the measured mean corrosion depth.

Mineralogical and Chemical Variation in Weathering Profile on Ultramafic Rocks During Vermiculitization (질석화가 진행된 풍화단면에서의 광물조성과 주원소의 변화)

  • Moon, Hi-Soo;Song, Yungoo;Sin, Sang Eun
    • Economic and Environmental Geology
    • /
    • v.26 no.1
    • /
    • pp.29-40
    • /
    • 1993
  • Several vermiculite deposits occur as the alteration product from phlogopite in ultramafic rock, in the Hongseong and Cheongyang area, South Korea. Some quarries show well-defined weathering profile. Samples collected from those quarries were examined by XRD and chemistry to define a vertical variations in mineralogy and chemistry of the weathering profile developed on ultramafic rocks. The analysis by X-ray diffractometry showed that mineral compositions changed continuously as depth of profile increasing, the vermiculite-the phlogopite/vermiculite interstratified-the phlogopite. Chemical analysis of bulk samples in altered zone revealed that regardless of composition and kinds of mineral in the rock, there are significant increase of MgO, CaO and $H_2O$, and decrease of K as depth of profile decrease reflecting the characteristics in vermiculitization. Also, there was a tendency that weathering indicies of each sample horizon change gradually with increasing depth. This tendency can be explained as variations of degree of vermiculitization. The regular changes of mineralogical and chemical composition in vertical profile suggest that weathering is the most important process in vermiculitization in this area.

  • PDF

Modeling of Geochemical Variations and Weathering Depth on the Surface of Pelitic Rocks in Periodical Submerging Zone: Bangudae Petroglyphs (주기적 침수구역 이질암 표면의 지구화학적 변화와 풍화심도 모델링: 반구대 암각화)

  • Chan Hee Lee;Yu Gun Chun
    • Economic and Environmental Geology
    • /
    • v.55 no.6
    • /
    • pp.583-596
    • /
    • 2022
  • The rock surface of Bangudae petroglyphs is mainly dark brown hornfelsified shales by contact metamorphism. The surface form a weathered layer of a invariable depth, and there is a difference with mineral and chemical composition between weathered and non-weathered layers. Surface of the petroglyphs has been discolored to light brown over the face due to biological and chemical weathering. As the measuring chromaticity based on the non-weathered layer, the whiteness and yellowness increased in the weathered layer, and the color difference (ΔE) was 5.54 to 36.89 (mean 17.26). In the weathered layer of the petroglyph surface, the CaO content was reduced by about 90% compared to the non-weathered layer, and Sr also showed the same trend. In particular, the mean porosity of the non-weathered layer was 0.4%, but it was estimated as 25.0% in the weathered layer. This is interpreted as the fact that calcite reacts with water, and forms a weathered layer from the surface as it is eluted. Based on the weathering depth modeling of the petroglyphs using the penetration characteristics of X-rays, the weathering depth of rock faces was found to be 1 to 2mm. However, the area classified as 2mm or more estimated to be a maximum of 3 to 4mm, considering the weathering depth around the petroglyphs surface.

A Case Study on Geotechnical Properties and Weathering Degree of Weathered Granite Rock (화강 풍화암의 지반특성 및 풍화도 평가에 대한 사례 연구)

  • Lee, Seung-Hwan;Yoo, Byeong Soo;Chung, Choong-Ki
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.12
    • /
    • pp.127-139
    • /
    • 2017
  • Site investigation including boring and various in-situ borehole test (Pressuremeter test, Borehole shear test, Downhole test, Suspension PS logging, Density logging) and X-ray fluorescence analysis for rock core sample were performed to estimate geotechnical properties and weathering degree of weathered granite rock in Goyang. Deformation modulus, shear strength parameter and shear wave velocity estimated through in-situ borehole test had a tendency to increase with depth. And several chemical weathering indices evaluated by X-ray fluorescence analysis had a general tendency of reducing weathering degree in accordance with depth. Also, relationship between VR determined as a representative weathering index and the geotechnical properties was analyzed.

The Characteristics of Shear for Decomposed Granite Soils on Cutting Slope Related to Time Effects (시간효과를 고려한 절개사면 화강토의 전단특성 연구)

  • Jung, Sang-Kug
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.5 no.1
    • /
    • pp.206-217
    • /
    • 2001
  • The purpose of this study was to estimate that the relations of weathering speed and shear strength of granite soil by tracing the weathering depth of granite soil from the very moment of its cutting. The results obtained this follows ; 1) The relationships among Nc, Li and CEC, Li>6%, CEC>14 corresponds to Nc=2~30, and 4%${\phi}$)increases at a standard pressure. 3) And Nc=0~50 corresponds to $27{\sim}50^{\circ}$ of internal fiction angle and to 12~49kPa of cohesion. That is to say, internal friction angle(${\phi}$)corresponds better than cohesion(c). In conclusion, this study suggests that in simplified dynamic cone penetration test a penetration boundary line of 5 centimeters is decided at around Li=4%, CEC=3(meq/100g) which is classified as a completely weathering soil. It also appears that CEC increases as Li increases while Nc decreases.

  • PDF

The Variation of Sedimentary Rock Strength due to Weathering (풍화에 따른 퇴적암의 강도 변화)

  • 배우석;이봉직;오세욱;이종규
    • Journal of the Korean Society of Safety
    • /
    • v.18 no.1
    • /
    • pp.89-93
    • /
    • 2003
  • The failure of rock slopes were influenced by weathering, which causes change in the shear strength. The weathering is also directly related to slaking and swelling characteristics. In the paper, the core of diameter loom was obtained by digging on rock slope of Kong-ju in Korea and then EDX(Energy Dispersive X-ray spectrometer) analysis was carried out to verified element of chief rock-forming minerals. Uniaxial compression tests, slaking tests, and point load test are performed to study engineering characteristics of conglomerate and red shale. As a results of slaking test, slaking index of conglomerate indicate range of 85.11-99.58 and shale indicate 58.37-99.23. Therefore, it is recognized that the resistance of shale to weathering decreases in shallow depth and it greatly influences the strength of rock. The result of uniaxial compression test and Point load test show that the strength of sedimentary such as conglomerate and red shale has an influence on both weathering and saturation.

Evaluation and Weathering Depth Modeling of Thermally Altered Pelitic Rocks based on Chemical Weathering and Variations: Ulju Cheonjeon-ri Petroglyph (화학적 풍화작용과 조성변화에 따른 열변질 이질암의 풍화심도 모델링 및 평가: 울주 천전리 각석)

  • LEE Chan Hee;CHUN Yu Gun
    • Korean Journal of Heritage: History & Science
    • /
    • v.56 no.4
    • /
    • pp.160-189
    • /
    • 2023
  • The Cheonjeon-ri petroglyph is inscribed with shale formation belonging to the Daegu Formation of the Gyeongsang Supergroup in the Cretaceous of the Mesozoic Era. This rock undergoes thermal alteration to become hornfels, and has a high hardness and dense texture. Rock-forming minerals have almost the same composition as quartz, alkali felspar, plagioclase, calcite, mica, chlorite and opaque minerals, but calcite is rarely detected in the weathered zone. The petroglyph forms a weathered zone with a certain depth, and there is a difference in mineral and chemical composition between weathered and unweathered zones, respectively. The CaO contents of the weathered zone were reduced by more than 90% compared to that of the unweathered zone, because calcite reacted with water and dissolved. As a result of calculating the surface weathering depth for the petroglyph with the transmission characteristics of X-rays, depth of the parts in falling off and exfoliation showed a depth of about 0.5 to 1 mm, but the weathering depth in most areas was calculated to be about 3 to 4 mm. This can be proved by the contents and changes of Ca and Sr. The surface discolorations of the petroglyph are distributed with different color density, and the yellowish brown discoloration is alternated with a thin biofilm layer, showing a coverage of 79.6%. Therefore, periodic preservation managements and preventive conservation monitoring that can effectively control the physicochemical and biological damages of the Cheonjeonri petroglyph will be necessary.

Kaolinitzation Process in Intensely Weathered Granitic Rocks, Ganghwa Island (강화도(江華島) 온수리(溫水里) 지역(地域) 화강암(花崗岩)의 풍화작용(風化作用)에 의한 카올리나이트의 형성(形成))

  • Moon, Hi-Soo;Kim, Shin Ae
    • Economic and Environmental Geology
    • /
    • v.22 no.1
    • /
    • pp.65-80
    • /
    • 1989
  • Strongly weathered granitic rocks are widely distributed in the south-eastern part of the Ganghwa island. Kaolinite developed during intense weathering on this granitic rocks have been studied mineralogically and chemically. Various weathering indexes were ca1culated on the basis of oxide. Those indexes are slightly varied with depth. It shows that the percentages of $Al_2O_3$ increase but that of $CaO+Na_2O+K_2O$ decrease as the weathering progress. These results indicate that day minerals, mainly kaolinite with the appreciable amount of halloysite, were formed by the weathering of feldspars in the granitic rocks. X-ray diffraction, differential thermal analysis, infrared spectrometry and electron microscopy were used to characterize and estimate crystallinity of the kaolinite. Generally, Kaolinite shows a less sharp basal reflection and relatively low dehydroxylation temperature, indicating disordered kaolinite. They usually occur aggregates as a vermicular kaolinites showing loose basal plane stacking arrangement.

  • PDF

Variations of Clay Mineral Assemblage, Colour, and Microfossil Abundance in the Tertiary Sediments from the Pohang Area During Chemical Weathering (포항지역(浦項地域) 제(第)3기층(紀層) 퇴적암(堆積岩)중 화학적풍화작용(化學的風化作用)이 결토광물조성(結土鑛物組成), 화학조성(化學組成), 암색(岩色) 및 미화석(微化石) 산출빈도(産出頻度)에 미치는 영향)

  • Moon, Hi-Soo;Yun, Hyesu;Min, Kyung Duck;Lee, Hyun Koo;Lee, Jong Chun
    • Economic and Environmental Geology
    • /
    • v.23 no.2
    • /
    • pp.201-213
    • /
    • 1990
  • Mineralogy, chemistry, physical property, and fossil abundance have been studied for the samples collected from three weathering profiles, two from the Duho Formation and one from the Hagjeon Formation in the Tertiary sediments in the Pohang area. The mineralogy of the samples from the Duho Formation shows somewhat different from that of the Hagjeon Formation. Kaolinite is more abundant and shows higher crystallinity in samples from the Duho Formation than those in the Hagjeon Formation, but clay mineral assemblage in each weathering profile remain fairly constant with depth. This difference in mineral distribution seems to be inherited from original source materials. It indicates that little or not severe leaching has been taking place in these three weathering profiles. Weathering indicies indicate different degrees of susceptibility to chemical weathering in these two formations. The Duho Formation has a higher degree of susceptibility to weathering than that of the Hagjeon Formation which is mainly due to differences in clay mineral assemblages in both formations. A noticeble colour difference between oxidized and unoxidized zones in each profile can be easily recognized which is definetely due to different decomposition rate organic carbon by various oxidation state from surface to bottom of the profile. Weathering process have also intensively influenced microfossil preservation about up to 7-10 m in depth in the Duho Formation. Consequently, characteristics observed at weathering surface should be used as a subsidiary tool in setting geologic boundary or establishing formation. Great care must be taken to choose sampling site for microfossil study.

  • PDF