• 제목/요약/키워드: Weather observation

검색결과 608건 처리시간 0.027초

AWS 설치장소에 따른 기온 특성 (The Characteristics of Air Temperature according to the Location of Automatic Weather System)

  • 주형돈;이미자;함인화
    • 대기
    • /
    • 제15권3호
    • /
    • pp.179-186
    • /
    • 2005
  • Due to several difficulties, a number of Automatic Weather Systems (AWS) operated by Korea Meteorological Administration (KMA) are located on the rooftop so that the forming of standard observation environment to obtain the accuracy is needed. Therefore, the air temperature of AWSs on the synthetic lawn and the concrete of the rooftop is compared with the standard observation temperature. The hourly mean temperature is obtained by monthly and hourly mean value and the difference of temperature is calculated according to the location, the weather phenomenon, and cloud amount. The maximum and the minimum temperatures are compared by the conditions, such as cloud amount, the existence of precipitation or not. Consequently, the temperature on the synthetic lawn is higher than it on the concrete so that it is difficult to obtain same effect from ASOS, on the contrary the installation of AWS on the synthetic lawn seem to be inadequate due to heat or cold source of the building.

현업 국지모델기반 2018년 여름철 기상 1호 특별 고층관측자료의 관측 민감도 실험 (Observing Sensitivity Experiment Based on Convective Scale Model for Upper-air Observation Data on GISANG 1 (KMA Research Vessel) in Summer 2018)

  • 최다영;황윤정;이용희
    • 대기
    • /
    • 제30권1호
    • /
    • pp.17-30
    • /
    • 2020
  • KMA performed the special observation program to provide information about severe weather and to monitor typhoon PRAPIROON using the ship which called the Gisang 1 from 29 June 2018 to 4 July 2018 (UTC). For this period, upper-air was observed 21 times with 6 hour intervals using rawinsonde in the Gisang 1. We investigated the impact of upper-air observation data from the Gisang 1 on the performance of the operational convective scale model (we called LDAPS). We conducted two experiments that used all observation data including upper-air observation data from the Gisang 1 (OPER) and without it (EXPR). For a typhoon PRAPIROON case, track forecast error of OPER was lower than EXPR until forecast 24 hours. The intensity forecast error of OPER for minimum sea level pressure was lower than EXPR until forecast 12 hours. The intensity forecast error of OPER for maximum wind speed was mostly lower than EXPR until forecast 30 hours. OPER showed good performance for typhoon forecast compared with EXPR at the early lead time. Two precipitation cases occurred in the south of the Korean peninsula due to the impact of Changma on 1 July and typhoon on 3 July. The location of main precipitation band predicted from OPER was closer to observations. As assimilating upper-air data observed in the Gisang 1 to model, it showed positive results in typhoon and precipitation cases.

한반도에 발생한 위험 기상 사례에 대한 관측 민감도 분석 (Forecast Sensitivity to Observations for High-Impact Weather Events in the Korean Peninsula)

  • 김세현;김현미;김은정;신현철
    • 대기
    • /
    • 제23권2호
    • /
    • pp.171-186
    • /
    • 2013
  • Recently, the number of observations used in a data assimilation system is increasing due to the enormous amount of observations, including satellite data. However, it is not clear that all of these observations are always beneficial to the performance of the numerical weather prediction (NWP). Therefore, it is important to evaluate the effect of observations on these forecasts so that the observations can be used more usefully in NWP process. In this study, the adjoint-based Forecast Sensitivity to Observation (FSO) method with the KMA Unified Model (UM) is applied to two high-impact weather events which occurred in summer and winter in Korea in an effort to investigate the effects of observations on the forecasts of these events. The total dry energy norm is used as a response function to calculate the adjoint sensitivity. For the summer case, TEMP observations have the greatest total impact while BOGUS shows the greatest impact per observation for all of the 24-, 36-, and 48-hour forecasts. For the winter case, aircraft, ATOVS, and ESA have the greatest total impact for the 24-, 36-, and 48-hour forecasts respectively, while ESA has the greatest impact per observation. Most of the observation effects are horizontally located upwind or in the vicinity of the Korean peninsula. The fraction of beneficial observations is less than 50%, which is less than the results in previous studies. As an additional experiment, the total moist energy norm is used as a response function to measure the sensitivity of 24-hour forecast error to observations. The characteristics of the observation impact with the moist energy response function are generally similar to those with the dry energy response function. However, the ATOVS observations were found to be sensitive to the response function, showing a positive (a negative) effect on the forecast when using the dry (moist) norm for the summer case. For the winter case, the dry and moist energy norm experiments show very similar results because the adjoint of KMA UM does not calculate the specific humidity of ice properly such that the dry and moist energy norms are very similar except for the humidity in air that is very low in winter.

낙동강 하구역 해양물리환경에 미치는 영향인자 비교분석(II) - 춘계 국지 해양파랑과 기상인자 - (Correlation between Spring Weather Factors and Local Wind Waves in the Nakdong River Estuary, Korea)

  • 유창일;윤한삼;박효봉
    • 해양환경안전학회지
    • /
    • 제14권2호
    • /
    • pp.119-125
    • /
    • 2008
  • 본 연구는 낙동강 하구 주변해역의 파랑 특성을 분석하기 위해 2007년 춘계(4월, 5월)에 낙동강 하구 중앙 해상 지점에서 관측된 파랑자료와 기상청에서 운영하고 있는 거제도 해양기상 부이에서 동일시점에 관측된 결과와 비교 검증하고 관측기간동안의 두 지점에서의 기상인자(기압, 기온, 풍속 및 풍향)와의 상관성을 비교하였다. 이상에서 얻어진 결과는 다음과 같다. (1) 2007년 춘계(4월과 5월)의 거제도 해양기상 부이 파랑 관측자료가 최대파고 약 3-4m, 유의파고 약 2m, 주기 약 5-8sec의 범위에 해당하는 반면에 낙동강 하구에서의 파랑 관측자료는 파고가 대체적으로 1m미만의 상태로 정온한 상태를 보이며 주기는 4-7sec의 범위를 가진다. (2) 춘계 파랑 관측자료에서 바람에 의한 파랑 감쇄가 없을 경우 거제도 해양기상 부이에서부터 천수 또는 굴절에 의한 파랑변형의 효과로 인해 낙동강 하구 중앙부까지 파랑이 전달되면서 최대파고값은 약 2.2m, 유의파고값은 약 1.3m정도 감소된다. (3) 낙동강 하구역으로 내습하는 해양파랑은 대상해역의 기상조건, 특히 바람의 영향(풍속 및 풍향)에 따라서 증감하는 것을 알 수 있는데, 특히 풍향이 역풍이 부는 경우 유의파고는 감소하는 경향을 나타내며 풍속이 클수록 그 감소 기울기도 더욱 커짐을 알 수 있다.

  • PDF

Adaptive Reconstruction of Multi-periodic Harmonic Time Series with Only Negative Errors: Simulation Study

  • Lee, Sang-Hoon
    • 대한원격탐사학회지
    • /
    • 제26권6호
    • /
    • pp.721-730
    • /
    • 2010
  • In satellite remote sensing, irregular temporal sampling is a common feature of geophysical and biological process on the earth's surface. Lee (2008) proposed a feed-back system using a harmonic model of single period to adaptively reconstruct observation image series contaminated by noises resulted from mechanical problems or environmental conditions. However, the simple sinusoidal model of single period may not be appropriate for temporal physical processes of land surface. A complex model of multiple periods would be more proper to represent inter-annual and inner-annual variations of surface parameters. This study extended to use a multi-periodic harmonic model, which is expressed as the sum of a series of sine waves, for the adaptive system. For the system assessment, simulation data were generated from a model of negative errors, based on the fact that the observation is mainly suppressed by bad weather. The experimental results of this simulation study show the potentiality of the proposed system for real-time monitoring on the image series observed by imperfect sensing technology from the environment which are frequently influenced by bad weather.

Generation and Verification on the Synthetic Precipitation/Temperature Data

  • Oh, Jai-Ho;Kang, Hyung-Jeon
    • 한국농림기상학회:학술대회논문집
    • /
    • 한국농림기상학회 2016년도 추계 학술발표논문집
    • /
    • pp.25-28
    • /
    • 2016
  • Recently, because of the weather forecasts through the low-resolution data has been limited, the demand of the high-resolution data is sharply increasing. Therefore, in this study, we restore the ultra-high resolution synthetic precipitation and temperature data for 2000-2014 due to small-scale topographic effect using the QPM (Quantitative Precipitation Model)/QTM (Quantitative Temperature Model). First, we reproduce the detailed precipitation and temperature data with 1km resolution using the distribution of Automatic Weather System (AWS) data and Automatic Synoptic Observation System (ASOS) data, which is about 10km resolution with irregular grid over South Korea. Also, we recover the precipitation and temperature data with 1km resolution using the MERRA reanalysis data over North Korea, because there are insufficient observation data. The precipitation and temperature from restored current climate reflect more detailed topographic effect than irregular AWS/ASOS data and MERRA reanalysis data over the Korean peninsula. Based on this analysis, more detailed prospect of regional climate is investigated.

  • PDF

Statistical Characteristics of Local Circulation Winds Observed using Climate Data in the Complex Terrain of Chilgok, Gyeongbuk

  • Ha-Young Kim;Soo-Jin Park;Hae-Dong Kim
    • 한국환경과학회지
    • /
    • 제32권5호
    • /
    • pp.375-384
    • /
    • 2023
  • Climate data were obtained over an eight-year period (July 2013 to June 2021) using an automatic weather observation system (AWS) installed at the foot of Mt. Geumo in Chilgok, Gyeongbuk. Using climate data, the statistical and meteorological characteristics of the local circulation between the Nakdong River and Mt. Geumo were analyzed. This study is based on automatic weather observation system data for Dongyeong, along with comparative climate data from the Korea Meteorological Administration (Chilgok) and the Gumi meteorological observatory. Over the eight- years, mountain and valley winds have occurred 48 times a year on average, with the highest occurring in May and the weakest winds in June and December. When mountain winds occurred, the temperature in the nearby lowland region more strongly decreased than when valley winds blew. However, the potential to use mountain winds to improve urban thermal environments is limited because mountain winds occur infrequently in summer when a drop in nighttime temperature is required.

KASI's contributions to Space Weather over the past 10 years

  • Cho, Kyungsuk;Park, Young-Deuk
    • 천문학회보
    • /
    • 제40권1호
    • /
    • pp.64.4-65
    • /
    • 2015
  • For the past decade, supported by the Korean government, the solar and space weather group of Korea Astronomy and Space Science Institute (KASI) has been researching towards the prevention of hazardous effects on Korean satellites, the stability of wireless telecommunications, and the safety of polar route aviation. So far, we have expanded the ground observation system, made space data more accessible, developed more advanced models for space weather forecasting, from which we have been providing forecasting services to a satisfied domestic clientele. Alongside that, we have continued our research on solar activities and the Sun-Earth connection. In this talk, I will summarize our contributions to space weather over the past 10 years and discuss future plans for next decade.

  • PDF

GIS Based Realistic Weather Radar Data Visualization Technique

  • Jang, Bong-Joo;Lim, Sanghun
    • Journal of Multimedia Information System
    • /
    • 제4권1호
    • /
    • pp.1-8
    • /
    • 2017
  • In recent years, the quixotic nature and concentration of rainfall due to global climate change has intensified. To monitor localized heavy rainfalls, a reliable disaster monitoring and warning system with advanced remote observation technology and high-precision display is important. In this paper, we propose a GIS-based intuitive and realistic 3D radar data display technique for accurate and detailed weather analysis. The proposed technique performs 3D object modeling of various radar variables along with ray profiles and then displays stereoscopic radar data on detailed geographical locations. Simulation outcomes show that 3D object modeling of weather radar data can be processed in real time and that changes at each moment of rainfall events can be observed three-dimensionally on GIS.

WRF-UCM (Urban Canopy Model)을 이용한 서울 지역의 도시기상 예보 평가 (Evaluation of Urban Weather Forecast Using WRF-UCM (Urban Canopy Model) Over Seoul)

  • 변재영;최영진;서범근
    • 대기
    • /
    • 제20권1호
    • /
    • pp.13-26
    • /
    • 2010
  • The Urban Canopy Model (UCM) implemented in WRF model is applied to improve urban meteorological forecast for fine-scale (about 1-km horizontal grid spacing) simulations over the city of Seoul. The results of the surface air temperature and wind speed predicted by WRF-UCM model is compared with those of the standard WRF model. The 2-m air temperature and wind speed of the standard WRF are found to be lower than observation, while the nocturnal urban canopy temperature from the WRF-UCM is superior to the surface air temperature from the standard WRF. Although urban canopy temperature (TC) is found to be lower at industrial sites, TC in high-intensity residential areas compares better with surface observation than 2-m temperature. 10-m wind speed is overestimated in urban area, while urban canopy wind (UC) is weaker than observation by the drag effect of the building. The coupled WRF-UCM represents the increase of urban heat from urban effects such as anthropogenic heat and buildings, etc. The study indicates that the WRF-UCM contributes for the improvement of urban weather forecast such nocturnal heat island, especially when an accurate urban information dataset is provided.