• 제목/요약/키워드: Weather observation

검색결과 605건 처리시간 0.025초

2017년 1월 20일 발생한 강원 영동대설 사례에 대한 대기의 구조적 특성 연구 (A Study on the Synoptic Structural Characteristics of Heavy Snowfall Event in Yeongdong Area that Occurred on 20 January, 2017)

  • 안보영;이정선;김백조;김희원
    • 한국환경과학회지
    • /
    • 제28권9호
    • /
    • pp.765-784
    • /
    • 2019
  • The synoptic structural characteristics associated with heavy snowfall (Bukgangneung: 31.3 cm) that occurred in the Yeongdong area on 20 January 2017 was investigated using surface and upper-level weather charts, European Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis data, radiosonde data, and Moderate Resolution Imaging Spectroradiometer (MODIS) cloud product. The cold dome and warm trough of approximately 500 hPa appeared with tropopause folding. As a result, cold and dry air penetrated into the middle and upper levels. At this time, the enhanced cyclonic potential vorticity caused strong baroclinicity, resulting in the sudden development of low pressure at the surface. Under the synoptic structure, localized heavy snowfall occurred in the Yeongdong area within a short time. These results can be confirmed from the vertical analysis of radiosonde data and the characteristics of the MODIS cloud product.

GIS 자료를 활용한 대도시 지역 기상관측소 관측환경 평가 (Evaluation of Observation Environment for Weather Stations Located in Metropolitan Areas)

  • 양호진;김재진
    • 대한원격탐사학회지
    • /
    • 제31권2호
    • /
    • pp.193-203
    • /
    • 2015
  • 본 연구에서는 전산 유체 역학(CFD) 모델을 이용하여 건물과 지형이 대도시 내의 산지에 위치한 기상관측소의 관측환경에 미치는 영향을 조사하였다. 대상 지역의 관측소주변 흐름 특성을 조사하기 위해, GIS 자료로부터 건물과 지형 자료를 구현하였다. 구현한 자료를 CFD 모델 입력 자료로 사용하였고 관측소를 중심으로 16방위의 유입류을 가정하여 수치실험을 실시하였다. 유입된 흐름과 관측 지점에서 모의된 흐름을 비교한 결과, 전반적으로 관측소 주변에 건물과 고지형이 존재할 경우, 모의된 풍향과 풍속이 유입류와 크게 차이가 나타났다. 건물과 지형의 풍하층에서 발생하는 2차 순환범위 내에 관측소가 포함될 경우, 더욱 큰 차이가 나타났다. 전산유체역학 모델은 주변 지형환경에 따른 관측지역의 상세흐름 변화를 평가 하는데 매우 유용한 도구임을 확인하였다.

SYNOP 지상관측자료를 활용한 수치모델 전구 예측성 검증 (Verification of the Global Numerical Weather Prediction Using SYNOP Surface Observation Data)

  • 이은희;최인진;김기병;강전호;이주원;이은정;설경희
    • 대기
    • /
    • 제27권2호
    • /
    • pp.235-249
    • /
    • 2017
  • This paper describes methodology verifying near-surface predictability of numerical weather prediction models against the surface synoptic weather station network (SYNOP) observation. As verification variables, temperature, wind, humidity-related variables, total cloud cover, and surface pressure are included in this tool. Quality controlled SYNOP observation through the pre-processing for data assimilation is used. To consider the difference of topographic height between observation and model grid points, vertical inter/extrapolation is applied for temperature, humidity, and surface pressure verification. This verification algorithm is applied for verifying medium-range forecasts by a global forecasting model developed by Korea Institute of Atmospheric Prediction Systems to measure the near-surface predictability of the model and to evaluate the capability of the developed verification tool. It is found that the verification of near-surface prediction against SYNOP observation shows consistency with verification of upper atmosphere against global radiosonde observation, suggesting reliability of those data and demonstrating importance of verification against in-situ measurement as well. Although verifying modeled total cloud cover with observation might have limitation due to the different definition between the model and observation, it is also capable to diagnose the relative bias of model predictability such as a regional reliability and diurnal evolution of the bias.

도시기상 관측을 위한 메타데이터의 표준화 (Standardization of Metadata for Urban Meteorological Observations)

  • 송윤영;채정훈;최민혁;박문수;최영진
    • 한국대기환경학회지
    • /
    • 제30권6호
    • /
    • pp.600-618
    • /
    • 2014
  • The metadata for urban meteorological observation is standardized through comparison with those established at the World Meteorological Organization and the Korea Meteorological Administration to understand the surrounding environment around the sites exactly and maintain the networks and sites efficiently. It categorizes into metadata for an observational network and observational sites. The latter is again divided into the metadata for station general information, local scale information, micro scale information, and visual information in order to explain urban environment in detail. The metadata also contains the static information such as urban structure, surface cover, metabolism, communication, building density, roof type, moisture/heat sources, and traffic as well as the update information on the environment change, maintenance, replacement, and/or calibration of sensors. The standardized metadata for urban meteorological observation is applied to the Weather Information Service Engine (WISE) integrated meteorological sensor network and sites installed at Incheon area. It will be very useful for site manager as well as researchers in fields of urban meteorology, radiation, surface energy balance, anthropogenic heat, turbulence, heat storage, and boundary layer processes.

Quantitative Estimation of the Precipitation utilizing the Image Signal of Weather Radar

  • Choi, Jeongho;Lim, Sanghun;Han, Myoungsun;Kim, Hyunjung;Lee, Baekyu
    • Journal of Multimedia Information System
    • /
    • 제5권4호
    • /
    • pp.245-256
    • /
    • 2018
  • This study estimated rainfall information more effectively by image signals through the information system of weather radar. Based on this, we suggest the way to estimate quantitative precipitation utilizing overlapped observation area of radars. We used the overlapped observation range of ground hyetometer observation network and radar observation network which are dense in our country. We chose the southern coast where precipitation entered from seaside is quite frequent and used Sungsan radar installed in Jeju island and Gudoksan radar installed in the southern coast area. We used the rainy season data generated in 2010 as the precipitation data. As a result, we found a reflectivity bias between two radar located in different area and developed the new quantitative precipitation estimation method using the bias. Estimated radar rainfall from this method showed the apt radar rainfall estimate than the other results from conventional method at overall rainfall field.

우리나라 지역별 기온변화 특성 (A Study on the Air Temperature Changes and Regional Characteristics in South Korea)

  • 김태룡
    • 통합자연과학논문집
    • /
    • 제2권2호
    • /
    • pp.131-167
    • /
    • 2009
  • Global warming is regarded as one of the most critical issues that should be taken care of by the entire global community as it threatens the survival of mankind. South Korea, in particular, undergoes faster warming than the average rate of global warming. South Korea has revealed various warming rates and trends being surrounded by sea on three sides and having complex terrains dominated by mountains. The rates vary according to regions and their urbanization and industrialization. Differences also derive from seasons and weather elements. Changes to the highest, mean, and lowest temperature are also different according to the characteristics of regions and observatories, which is more apparent where the force of artificial weather applies. In an urban area, temperature gaps tend to decrease as the lowest temperature rises more than the highest temperature. Meanwhile, temperature gaps grow further in a coastal or country region where the force of artificial weather is small and the force of natural weather prevails. In this study, the investigator analyzed the changes to the weather elements of 11 observation spots that had gone through no changes in terms of observation environment since 1961, were consecutively observed, and had the quality of their observation data monitored on an ongoing basis. Using the results, I tried to identify natural and artificial causes affecting certain spots. Located on the east coast of the Asian Continent, South Korea sees weather changing very dynamically. Having huge influences on our weather, China has achieved very rapid industrialization for the last 30 years and produced more and more greenhouse gases and air pollution due to large-size development projects. All those phenomena affect our weather system in significant ways. Global warming continues due to various reasons with regional change differences. Thus the analysis results of the study will hopefully serve as basic data of weather statistics with which to set up countermeasures against climate changes.

  • PDF

Retrieval and Validation of Precipitable Water Vapor using GPS Datasets of Mobile Observation Vehicle on the Eastern Coast of Korea

  • Kim, Yoo-Jun;Kim, Seon-Jeong;Kim, Geon-Tae;Choi, Byoung-Choel;Shim, Jae-Kwan;Kim, Byung-Gon
    • 대한원격탐사학회지
    • /
    • 제32권4호
    • /
    • pp.365-382
    • /
    • 2016
  • The results from the Global Positioning System (GPS) measurements of the Mobile Observation Vehicle (MOVE) on the eastern coast of Korea have been compared with REFerence (REF) values from the fixed GPS sites to assess the performance of Precipitable Water Vapor (PWV) retrievals in a kinematic environment. MOVE-PWV retrievals had comparatively similar trends and fairly good agreements with REF-PWV with a Root-Mean-Square Error (RMSE) of 7.4 mm and $R^2$ of 0.61, indicating statistical significance with a p-value of 0.01. PWV retrievals from the June cases showed better agreement than those of the other month cases, with a mean bias of 2.1 mm and RMSE of 3.8 mm. We further investigated the relationships of the determinant factors of GPS signals with the PWV retrievals for detailed error analysis. As a result, both MultiPath (MP) errors of L1 and L2 pseudo-range had the best indices for the June cases, 0.75-0.99 m. We also found that both Position Dilution Of Precision (PDOP) and Signal to Noise Ratio (SNR) values in the June cases were better than those in other cases. That is, the analytical results of the key factors such as MP errors, PDOP, and SNR that can affect GPS signals should be considered for obtaining more stable performance. The data of MOVE can be used to provide water vapor information with high spatial and temporal resolutions in the case of dramatic changes of severe weather such as those frequently occurring in the Korean Peninsula.

나이브 베이지안 분류기를 이용한 선에코 탐지 방법에 대한 연구 (A Study of Line-shaped Echo Detection Method using Naive Bayesian Classifier)

  • 이한수;김성신
    • 한국지능시스템학회논문지
    • /
    • 제24권4호
    • /
    • pp.360-365
    • /
    • 2014
  • 기상 레이더, 인공위성, 라디오존데 등 날씨 예보를 수행하기 위해 많은 종류의 첨단 장비들이 사용되고 있다. 이들 중에서 지상에 설치된 기상 레이더는 넓은 탐지영역, 높은 시간 및 공간 분해능 등과 같은 많은 장점을 가지고 있기 때문에 기상예보 과정에서 필수적인 장비이다. 이러한 기상 레이더 데이터의 내부에는 기상현상 이외에도 여러 가지 외부 요인에 의해 발생하는 비기상현상이 관측되는데, 이는 기상 예보의 정확도를 감소시키는 원인이 된다. 본 논문에서는 기상 레이더 데이터를 이용한 연구를 통하여 비기상현상이 레이더에 관측되어 에코 형태로 나타난 것들 중에서 선 모양으로 발생하는 비기상에코를 제거하는 방법을 제안한다. 원시 레이더 데이터에서 선에코를 구분하여 그 특성을 추출한 후, 이들을 바탕으로 데이터 페어를 구성하여 나이브 베이지안 분류기를 학습시켰다. 그리고 학습된 나이브 베이지안 분류기를 선에코와 기상에 코가 혼재된 사례에 적용하였다. 실제 사례를 바탕으로 한 실험을 통해서 제안한 나이브 베이지안 분류기가 효과적으로 선에코를 식별할 수 있음을 확인하였다.

Korean Space Weather Activities

  • 조경석;박영득;안병호
    • 천문학회보
    • /
    • 제38권1호
    • /
    • pp.66.1-66.1
    • /
    • 2013
  • Six universities, four institutes and agencies, and two vendors are working for space weather in South Korea. Along with education and research activities, they have been extending ground-based observation system and upgrading space weather service, and participating in international space weather programs. Recently, several space missions for space weather have been proposed in accordance with the national space program of Korea. Here, we report and discuss the current status and future perspective of Korean community for space weather.

  • PDF

종관 관측 자료 변화에 따른 예보 성능 분석 (Analysis of Forecast Performance by Altered Conventional Observation Set)

  • 한현준;권인혁;강전호;전형욱;이시혜;임수정;김태훈
    • 대기
    • /
    • 제29권1호
    • /
    • pp.21-39
    • /
    • 2019
  • The conventional observations of the Korea Meteorological Administration (KMA) and National Centers for Environmental Prediction (NCEP) are compared in the numerical weather forecast system at the Korea Institute of Atmospheric Prediction Systems (KIAPS). The weather forecasting system used in this study is consists of Korea Integrated Model (KIM) as a global numerical weather prediction model, three-dimensional variational method as a data assimilation system, and KIAPS Package for Observation Processing (KPOP) as an observation pre-processing system. As a result, the forecast performance of NCEP observation was better while the number of observation is similar to the KMA observation. In addition, the sensitivity of forecast performance was investigated for each SONDE, SURFACE and AIRCRAFT observations. The differences in AIRCRAFT observation were not sensitive to forecast, but the use of NCEP SONDE and SURFACE observations have shown better forecast performance. It is found that the NCEP observations have more wind observations of the SONDE in the upper atmosphere and more surface pressure observations of the SURFACE in the ocean. The results suggest that evenly distributed observations can lead to improved forecast performance.