After the first Covid-19 confirmed case occurred in Korea in January 2020, interest in personal transportation such as public bicycles not public transportation such as buses and subways, increased. The demand for 'Ddareungi', a public bicycle operated by the Seoul Metropolitan Government, has also increased. In this study, a demand prediction model of a GRU(Gated Recurrent Unit) was presented based on the rental history of public bicycles by time zone(2019~2021) in Seoul. The usefulness of the GRU method presented in this study was verified based on the rental history of Around Exit 1 of Yeouido, Yeongdengpo-gu, Seoul. In particular, it was compared and analyzed with multiple linear regression models and recurrent neural network models under the same conditions. In addition, when developing the model, in addition to weather factors, the Seoul living population was used as a variable and verified. MAE and RMSE were used as performance indicators for the model, and through this, the usefulness of the GRU model proposed in this study was presented. As a result of this study, the proposed GRU model showed higher prediction accuracy than the traditional multi-linear regression model and the LSTM model and Conv-LSTM model, which have recently been in the spotlight. Also the GRU model was faster than the LSTM model and the Conv-LSTM model. Through this study, it will be possible to help solve the problem of relocation in the future by predicting the demand for public bicycles in Seoul more quickly and accurately.
Journal of The Korean Society of Agricultural Engineers
/
v.58
no.3
/
pp.57-69
/
2016
In this study, we analyzed the extreme rainfall distribution scenarios based on probable rainfall calculation and applying various time distribution models over the landslide high risk zones in urban areas. We used observed rainfall data form total 71 ASOS (Automated Synoptic Observing System) station and AWS (Automatic Weather Station) in KMA (Korea Meteorological Administration), and we analyzed the linear trends for 1-hr and 24-hr annual maximum rainfall series using simple linear regression method, which are identified their increasing trends with slopes of 0.035 and 0.660 during 1961-2014, respectively. The Gumbel distribution was applied to obtain the return period and probability precipitation for each duration. The IDF (Intensity-Duration-Frequency) curves for landslide high risk zones were derived by applying integrated probability precipitation intensity equation. Results from IDF analysis indicate that the probability precipitation varies from 31.4~38.3 % for 1 hr duration, and 33.0~47.9 % for 24 hr duration. It also showed different results for each area. The $Huff-4^{th}$ Quartile method as well as Mononobe distribution were selected as the rainfall distribution scenarios of landslide high risk zones. The results of this study can be used to provide boundary conditions for slope collapse analysis, to analyze sediment disaster risk, and to use as input data for risk prediction of debris flow.
Journal of The Korean Society of Agricultural Engineers
/
v.57
no.3
/
pp.9-19
/
2015
Internal air temperature of greenhouse is an important variable that can be influenced by the complex interaction between outside weather and greenhouse inside climate. This paper focuses on a data-based model approach to predict internal air temperature of the greenhouse. External air temperature, solar radiation, wind speed and wind direction were measured next to an experimental greenhouse supported by the Electronics and Telecommunications Research Institute and used as input variables for the model. Internal air temperature was measured at the center of three sections of the greenhouse and used as an output variable. The proposed model consisted of a transfer function including the four input variables and tested the prediction accuracy according to the sampling interval of the input variables, the orders of model polynomials and the time delay variable. As a result, a second-order model was suitable to predict the internal air temperature having the predictable time of 20-30 minutes and average errors of less than ${\pm}1K$. Afterwards mechanistic interpretation was conducted based on the energy balance equation, and it was found that the resulting model was considered physically acceptable and satisfied the physical reality of the heat transfer phenomena in a greenhouse. The proposed data-based model approach is applicable to any input variables and is expected to be useful for predicting complex greenhouse microclimate involving environmental control systems.
Two heavy snowfall events occurred in Yeongnam and Yeongdong regions of the Korean Peninsula during the period from 4 to 6 March 2005 are analyzed. The events were developed by two different meso-scale snow clouds associated with an extratropical low passing over the Western Pacific. Based on synoptic data, GOES-9 satellite images, and precipitation amount data, the events were named as Sokcho and Busan cases, respectively. We analyzed the development mechanism of the events using meterological variables from the NCEP(National Centers for Environmental Prediction) /NCAR(National Centers for Atmospheric Research) reanalysis data such as potential vorticity(PV), divergence, tropopause undulation, static stability, and meridional wind circulation. The present analyses show that in the case of Sokcho, the cyclonic circulation in the lower atmosphere in the strong baroclinic region induced the cyclonic circulation in the upper atmosphere. The cyclonic circulation in the lower and upper atmosphere caused a heavy snowfall in the Sokcho region. In the case of Busan, the strong cyclonic circulation in the upper atmosphere was initiated by the stratospheric air intrusion with the high positive PV into the troposphere during the tropopause folding. The upper strong cyclonic circulation enhanced the cyclonic circulation in the lower disturbed atmosphere due to the extratropical low. This lower cyclonic circulation in turn, intensified the upper cyclonic circulation, that caused a heavy snowfall in the Busan region.
Kim, Hyun-Goo;Lee, Soon-Hwan;Lee, Sang-Woo;Lee, Jong-Hyuk
한국신재생에너지학회:학술대회논문집
/
2010.06a
/
pp.185.2-185.2
/
2010
한반도 국가바람지도(김현구, 2009)는 한국에너지기술연구원에서 지식경제부의 부처임무사업으로 구축되었으며 현재 웹서비스(http://www.kier-wind.org)를 통하여 정보를 제공하고 있다. 국가바람지도는 수치기상예측(NWP; Numerical Weather Prediction) 모델을 이용하여 영토, 영해에 대해 $1km{\times}1km$의 고해상도로 작성한 뒤(이순환 등, 2009) 풍력자원 정보로 재가공되었다. 한반도 국가바람지도는 5년의 장기간에 대한 시계열 수치기상예측에 의하여 구축되었기 때문에 데이터베이스(DB; database)의 효율적 관리가 필연적으로 요구된다. MM5 또는 WRF 모델의 고유 출력포맷의 자료구조는 풍력자원분석에 필요한 기상요소 외에도 대기과학자에게 필요한 수많은 기상인자를 종합적으로 포함하고 있다. 따라서 2차원 층(layer) 또는 3차원 공간분포 분석 및 계산격자인 셀(cell)에서의 1차원 시계열 분석 등 다양한 자료축출에는 비효율적인 자료구조가 된다. 이러한 자료구조의 불편을 해소하기 위해서는 기상요소별로 독립적이고 빈번한 시계열 자료 추출에 효율성을 가지며 어떤 프로그래밍 언어를 사용하든지 직관적으로 쉽게 사용할 수 있는 바람지도 데이터베이스의 재구성이 요구된다. 이에 대용량 수치자료의 처리 측면에서 장점을 가지는 과학기술 프로그래밍 언어인 IDL을 기반으로 국가바람지도의 자료구조를 효율화하여 데이터베이스화 하였으며 IDL에 내재된 그래픽 기능을 활용하여 가시화를 구현함으로써 연구개발자의 입장에서 국가바람지도의 활용성 및 효율성을 향상시키고자 하였다.
Journal of the Korean Association of Geographic Information Studies
/
v.15
no.4
/
pp.15-25
/
2012
This study is to develop a web-based real-time agricultural flood management system(RAFMS) for 378 agricultural reservoirs equipped with auto water level gauge stations. The RAFMS was designed to operate linking with Rural Agricultural Water Resource Information System(RAWRIS) which supports data viz. real-time rainfall and water level necessary for RAFMS. The system was constituted to monitor the floods simultaneously at each reservoir by calculating the real-time reservoir inflow from watersheds, water level, and release to downstream. In addition, the system has the prediction function for the flood by applying weather forecasting data from Korea Meteorological Administration(KMA).
The Journal of The Korea Institute of Intelligent Transport Systems
/
v.19
no.3
/
pp.28-37
/
2020
This study developed a deep learning model that predicts rental demand for public bicycles. For this, public bicycle rental data, weather data, and subway usage data were collected. After building an exponential smoothing model, ARIMA model and LSTM-based deep learning model, forecasting errors were compared and evaluated using MSE and MAE evaluation indicators. Based on the analysis results, MSE 348.74 and MAE 14.15 were calculated using the exponential smoothing model. The ARIMA model produced MSE 170.10 and MAE 9.30 values. In addition, MSE 120.22 and MAE 6.76 values were calculated using the deep learning model. Compared to the value of the exponential smoothing model, the MSE of the ARIMA model decreased by 51% and the MAE by 34%. In addition, the MSE of the deep learning model decreased by 66% and the MAE by 52%, which was found to have the least error in the deep learning model. These results show that the prediction error in public bicycle rental demand forecasting can be greatly reduced by applying the deep learning model.
The periodic monitoring of crop conditions and timely estimation of crop yield are of great importance for supporting agricultural decision-makings, as well as for effectively coping with food security issues. Remote sensing has been regarded as one of effective tools for crop condition monitoring and crop type classification. Since 2010, RDA (Rural Development Administration) has been developing technology for monitoring on crop condition using remote sensing and model. These special papers address recent state-of-the-art of remote sensing and geospatial technologies for providing operational agricultural information, such as, crop yield estimation methods using remote sensing data and process-oriented model, crop classification algorithm, monitoring and prediction of weather and climate based on remote sensing data,system design and architecture of crop monitoring system, history on rice yield forecasting method.
Hwang, Man Uk;Hwang, Yong Woo;Lee, Ik Mo;Min, Dal Ki
Journal of Korean Society of Disaster and Security
/
v.9
no.2
/
pp.23-32
/
2016
Today the issue of deterioration of industrial complexes that are located close to life space of residents has been raised as a cause of threats to the safety of local communities. In this study, in order to improve the current risk analysis and scope of community notification, simulated threat zones were comparatively analyzed by utilizing the threat zones of alternative accident scenarios and modes of seasonal weather, and the area with a high probability of damage upon the leakage of toxic substances was predicted by examining wind directions observed at each time slot for each season. In addition, limit evacuation time and minimum separation distance to minimize casualties were suggested, and a proposal to enable more reasonable safety measures for on-site workers and nearby residents made by reviewing the risk management plan currently utilized for emergency response.
Journal of Satellite, Information and Communications
/
v.12
no.3
/
pp.1-7
/
2017
Climate change adaptation must be prepared, because the pattern of climate change in Korea is higher than the global average. In particular, it is estimated that Korea's economic loss due to climate change will reach 2,800 trillion won, and at least 300 trillion won will be needed for adaptation to climate change(KEI, 2011). Accurate climate change forecasts and impact forecasts are essential for efficient use of enormous climate change adaptation costs. For this climate change prediction and impact analysis, it is necessary to grasp not only the global average concentration but also the inhomogeneity of the greenhouse gas concentration which appears in each region. In this study, we analyze the feasibility of developing a greenhouse gas observation satellite, which is a cause of climate change, and present a development plan for a low orbit environmental satellite by examining the current status of the operation of the greenhouse gas observation satellite. The GHG monitoring satellite is expected to expand the scope of environmental monitoring by water/soil/ecology in addition to climate change, along with weather/agriculture/soil observation satellites.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.