• Title/Summary/Keyword: Weather Prediction

Search Result 895, Processing Time 0.034 seconds

Recent International Activity of KASI for Space Weather Research

  • Cho, Kyung-Suk;Park, Young-Deuk;Lee, Jae-Jin;Bong, Su-Chan;Kim, Yeon-Han;Hwang, Jung-A;Choi, Seong-Hwan
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.35 no.1
    • /
    • pp.32.1-32.1
    • /
    • 2010
  • KASI's Solar and Space Weather Research Group (SSWRG) is actively involved in solar and space weather research. Since its inception, the SSWRG has been utilizing ground-based assets for its research, such as the Solar Flare Telescope, Solar Imaging Spectrograph, and Sunspot Telescope. In 2007 SSWRG initiated the Korean Space Weather Prediction Center (KSWPC). The goal of KSWPC is to extend the current ground observation capabilities, construct space weather database and networking, develop prediction models, and expand space weather research. Beginning in 2010, SSWRG plans to expand its research activities by collaborating with new international partners, continuing the development of space weather prediction models and forecast system, and phasing into developing and launching space-based assets. In this talk, we will report on KASI's recent activities of international collaborations with NASA for STEREO (Solar Terrestrial Relations Observatory), SDO (Solar Dynamic Observatory), and Radiation Belt Storm Probe (RBSP).

  • PDF

Development of the Three-Dimensional Variational Data Assimilation System for the Republic of Korea Air Force Operational Numerical Weather Prediction System (공군 현업 수치예보를 위한 삼차원 변분 자료동화 체계 개발 연구)

  • Noh, Kyoungjo;Kim, Hyun Mee;Kim, Dae-Hui
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.21 no.3
    • /
    • pp.403-412
    • /
    • 2018
  • In this study, a three-dimensional variational(3DVAR) data assimilation system was developed for the operational numerical weather prediction(NWP) system at the Republic of Korea Air Force Weather Group. The Air Force NWP system utilizes the Weather Research and Forecasting(WRF) meso-scale regional model to provide weather information for the military service. Thus, the data assimilation system was developed based on the WRF model. Experiments were conducted to identify the nested model domain to assimilate observations and the period appropriate in estimating the background error covariance(BEC) in 3DVAR. The assimilation of observations in domain 2 is beneficial to improve 24-h forecasts in domain 3. The 24-h forecast performance does not change much depending on the estimation period of the BEC in 3DVAR. The results of this study provide a basis to establish the operational data assimilation system for the Republic of Korea Air Force Weather Group.

Verification of the Global Numerical Weather Prediction Using SYNOP Surface Observation Data (SYNOP 지상관측자료를 활용한 수치모델 전구 예측성 검증)

  • Lee, Eun-Hee;Choi, In-Jin;Kim, Ki-Byung;Kang, Jeon-Ho;Lee, Juwon;Lee, Eunjeong;Seol, Kyung-Hee
    • Atmosphere
    • /
    • v.27 no.2
    • /
    • pp.235-249
    • /
    • 2017
  • This paper describes methodology verifying near-surface predictability of numerical weather prediction models against the surface synoptic weather station network (SYNOP) observation. As verification variables, temperature, wind, humidity-related variables, total cloud cover, and surface pressure are included in this tool. Quality controlled SYNOP observation through the pre-processing for data assimilation is used. To consider the difference of topographic height between observation and model grid points, vertical inter/extrapolation is applied for temperature, humidity, and surface pressure verification. This verification algorithm is applied for verifying medium-range forecasts by a global forecasting model developed by Korea Institute of Atmospheric Prediction Systems to measure the near-surface predictability of the model and to evaluate the capability of the developed verification tool. It is found that the verification of near-surface prediction against SYNOP observation shows consistency with verification of upper atmosphere against global radiosonde observation, suggesting reliability of those data and demonstrating importance of verification against in-situ measurement as well. Although verifying modeled total cloud cover with observation might have limitation due to the different definition between the model and observation, it is also capable to diagnose the relative bias of model predictability such as a regional reliability and diurnal evolution of the bias.

A Study on the Development of Flight Prediction Model and Rules for Military Aircraft Using Data Mining Techniques (데이터 마이닝 기법을 활용한 군용 항공기 비행 예측모형 및 비행규칙 도출 연구)

  • Yu, Kyoung Yul;Moon, Young Joo;Jeong, Dae Yul
    • The Journal of Information Systems
    • /
    • v.31 no.3
    • /
    • pp.177-195
    • /
    • 2022
  • Purpose This paper aims to prepare a full operational readiness by establishing an optimal flight plan considering the weather conditions in order to effectively perform the mission and operation of military aircraft. This paper suggests a flight prediction model and rules by analyzing the correlation between flight implementation and cancellation according to weather conditions by using big data collected from historical flight information of military aircraft supplied by Korean manufacturers and meteorological information from the Korea Meteorological Administration. In addition, by deriving flight rules according to weather information, it was possible to discover an efficient flight schedule establishment method in consideration of weather information. Design/methodology/approach This study is an analytic study using data mining techniques based on flight historical data of 44,558 flights of military aircraft accumulated by the Republic of Korea Air Force for a total of 36 months from January 2013 to December 2015 and meteorological information provided by the Korea Meteorological Administration. Four steps were taken to develop optimal flight prediction models and to derive rules for flight implementation and cancellation. First, a total of 10 independent variables and one dependent variable were used to develop the optimal model for flight implementation according to weather condition. Second, optimal flight prediction models were derived using algorithms such as logistics regression, Adaboost, KNN, Random forest and LightGBM, which are data mining techniques. Third, we collected the opinions of military aircraft pilots who have more than 25 years experience and evaluated importance level about independent variables using Python heatmap to develop flight implementation and cancellation rules according to weather conditions. Finally, the decision tree model was constructed, and the flight rules were derived to see how the weather conditions at each airport affect the implementation and cancellation of the flight. Findings Based on historical flight information of military aircraft and weather information of flight zone. We developed flight prediction model using data mining techniques. As a result of optimal flight prediction model development for each airbase, it was confirmed that the LightGBM algorithm had the best prediction rate in terms of recall rate. Each flight rules were checked according to the weather condition, and it was confirmed that precipitation, humidity, and the total cloud had a significant effect on flight cancellation. Whereas, the effect of visibility was found to be relatively insignificant. When a flight schedule was established, the rules will provide some insight to decide flight training more systematically and effectively.

Forecasted Weather based Weather Data File Generation Techniques for Real-time Building Simulation (실시간 빌딩 시뮬레이션을 위한 예측 기상 기반의 기상 데이터 파일 작성 기법)

  • Kwak, Young-Hoon;Jeong, Yong-Woo;Han, Hey-Sim;Jang, Cheol-Yong;Huh, Jung-Ho
    • Journal of the Korean Solar Energy Society
    • /
    • v.34 no.1
    • /
    • pp.8-18
    • /
    • 2014
  • Building simulation is used in a variety of sectors. In its early years, building simulation was mainly used in the design phase of a building for basic functions. Recently, however, it has become increasingly important during the operating phase, for commissioning and facility management. Most building simulation tools are used to estimate the thermal environment and energy consumption performance, and hence, they require the inputting of hourly weather data. A building simulation used for prediction should take into account the use of standard weather data. Weather data, which is used as input for a building simulation, plays a crucial role in the prediction performance, and hence, the selection of appropriate weather data is considered highly important. The present study proposed a technique for generating real-time weather data files, as opposed to the standard weather data files, which are required for running the building simulation. The forecasted weather elements provided by the Korea Meteorological Administration (KMA), the elements produced by the calculations, those utilizing the built-in functions of Energy Plus, and those that use standard values are combined for hourly input. The real-time weather data files generated using the technique proposed in the present study have been validated to compare with measured data and simulated data via EnergyPlus. The results of the present study are expected to increase the prediction accuracy of building control simulation results in the future.

Applicability of the Solar Irradiation Model in Preparation of Typical Weather Data Considering Domestic Climate Conditions (표준기상데이터 작성을 위한 국내 기후특성을 고려한 일사량 예측 모델 적합성 평가)

  • Shim, Ji-Soo;Song, Doo-Sam
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.12
    • /
    • pp.467-476
    • /
    • 2016
  • As the energy saving issues become one of the important global agenda, the building simulation method is generally used to predict the inside energy usage to establish the power-saving strategies. To foretell an accurate energy usage of a building, proper and typical weather data are needed. For this reason, typical weather data are fundamental in building energy simulations and among the meteorological factors, the solar irradiation is the most important element. Therefore, preparing solar irradiation is a basic factor. However, there are few places where the horizontal solar radiation in domestic weather stations can be measured, so the prediction of the solar radiation is needed to arrive at typical weather data. In this paper, four solar radiation prediction models were analyzed in terms of their applicability for domestic weather conditions. A total of 12 regions were analyzed to compare the differences of solar irradiation between measurements and the prediction results. The applicability of the solar irradiation prediction model for a certain region was determined by the comparisons. The results were that the Zhang and Huang model showed the highest accuracy (Rad 0.87~0.80) in most of the analyzed regions. The Kasten model which utilizes a simple regression equation exhibited the second-highest accuracy. The Angstrom-Prescott model is easily used, also by employing a plain regression equation Lastly, the Winslow model which is known for predicting global horizontal solar irradiation at any climate regions uses a daily integration equation and showed a low accuracy regarding the domestic climate conditions in Korea.

Production of agricultural weather information by Deep Learning (심층신경망을 이용한 농업기상 정보 생산방법)

  • Yang, Miyeon;Yoon, Sanghoo
    • Journal of Digital Convergence
    • /
    • v.16 no.12
    • /
    • pp.293-299
    • /
    • 2018
  • The weather has a lot of influence on the cultivation of crops. Weather information on agricultural crop cultivation areas is indispensable for efficient cultivation and management of agricultural crops. Despite the high demand for agricultural weather, research on this is in short supply. In this research, we deal with the production method of agricultural weather in Jeollanam-do, which is the main production area of onions through GloSea5 and deep learning. A deep neural network model using the sliding window method was used and utilized to train daily weather prediction for predicting the agricultural weather. RMSE and MAE are used for evaluating the accuracy of the model. The accuracy improves as the learning period increases, so we compare the prediction performance according to the learning period and the prediction period. As a result of the analysis, although the learning period and the prediction period are similar, there was a limit to reflect the trend according to the seasonal change. a modified deep layer neural network model was presented, that applying the difference between the predicted value and the observed value to the next day predicted value.

Evolutionary Nonlinear Regression Based Compensation Technique for Short-range Prediction of Wind Speed using Automatic Weather Station (AWS 지점별 기상데이타를 이용한 진화적 회귀분석 기반의 단기 풍속 예보 보정 기법)

  • Hyeon, Byeongyong;Lee, Yonghee;Seo, Kisung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.1
    • /
    • pp.107-112
    • /
    • 2015
  • This paper introduces an evolutionary nonlinear regression based compensation technique for the short-range prediction of wind speed using AWS(Automatic Weather Station) data. Development of an efficient MOS(Model Output Statistics) is necessary to correct systematic errors of the model, but a linear regression based MOS is hard to manage an irregular nature of weather prediction. In order to solve the problem, a nonlinear and symbolic regression method using GP(Genetic Programming) is suggested for a development of MOS wind forecast guidance. Also FCM(Fuzzy C-Means) clustering is adopted to mitigate bias of wind speed data. The purpose of this study is to evaluate the accuracy of the estimation by a GP based nonlinear MOS for 3 days prediction of wind speed in South Korean regions. This method is then compared to the UM model and has shown superior results. Data for 2007-2009, 2011 is used for training, and 2012 is used for testing.

Construction of Korean Space Weather Prediction Center: Magnetometer

  • Kim, Khan-Hyuk;Choi, Seong-Hwan;Cho, Kyung-Seok;Park, Young-Deuk;Choi, Kyu-Chul
    • Bulletin of the Korean Space Science Society
    • /
    • 2008.10a
    • /
    • pp.32.3-32.3
    • /
    • 2008
  • Solar and Space Weather Research Group in Korea Astronomy & Space Science Institute (KASI) has been funded for "Construction of Korean Space Weather Prediction Center" from Korean government. It has started since 2007 February and is planed as a 5-year project. The goal of this project is to develop a space weather warning and prediction system by the next solar maximum. KASI installed a magnetometer at Mt. Bohyun, which is about 200 km south-east apart from KASI, in 2007 September. After finishing test observations of the magnetometer for the period from September 2007 to January 2008, KASI has operated the magnetometer to monitor geomagnetic field variations associated with space weather effect. Ground-based magnetometers are critical for understanding geomagnetic disturbances in the near-Earth space environment, which are caused by solar wind variations. In this talk, we introduce science topics to be done with the data from KASI magnetometer and also discuss how they are related to space weather phenomena.

  • PDF

PV Power Prediction Models for City Energy Management System based on Weather Forecast Information (기상정보를 활용한 도시규모-EMS용 태양광 발전량 예측모델)

  • Eum, Ji-Young;Choi, Hyeong-Jin;Cho, Soo-Hwan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.3
    • /
    • pp.393-398
    • /
    • 2015
  • City or Community-scale Energy Management System(CEMS) is used to reduce the total energy consumed in the city by arranging the energy resources efficiently at the planning stage and controlling them economically at the operating stage. Of the operational functions of the CEMS, generation forecasting of renewable energy resources is an essential feature for the effective supply scheduling. This is because it can develop daily operating schedules of controllable generators in the city (e.g. diesel turbine, micro-gas turbine, ESS, CHP and so on) in order to minimize the inflow of the external power supply system, considering the amount of power generated by the uncontrollable renewable energy resources. This paper is written to introduce numerical models for photo-voltaic power generation prediction based on the weather forecasting information. Unlike the conventional methods using the average radiation or average utilization rate, the proposed models are developed for CEMS applications using the realtime weather forecast information provided by the National Weather Service.