• Title/Summary/Keyword: Weather Phenomena

Search Result 201, Processing Time 0.028 seconds

Analysis of Air Temperature Change Distribution that Using GIS technique (GIS 기법을 이용한 대기온도 변화 분포 분석)

  • Jung, Gyu-Young;Kang, In-Joon;Kim, Soo-Gyum;Joo, Hong-Sik
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2010.04a
    • /
    • pp.395-397
    • /
    • 2010
  • AWS that exist in Pusan is watching local meteorological phenomena established in place that the weather observatory does not exist by real time, and is used usefully to early input data of numerical weather forecasting model. I wished to display downtown of Pusan and air temperature change of peripheral area using this AWS data. Analyzed volatility using AWS observation data for 5 years to recognize air temperature change of Pusan area through data about temperature among them. Drew air temperature distribution chart by season of recapitulative Pusan area applying IDW linear interpolation with this.

  • PDF

Operation of ULCS - real life

  • Prpic-Orsic, Jasna;Parunov, Josko;Sikic, Igor
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.4
    • /
    • pp.1014-1023
    • /
    • 2014
  • In this paper the real life operation of ULCS (Ultra Large Container Ships) is presented from the point of view of shipmasters. The paper provides interpretation of results of questionnaire filled by masters of large container ships during Tools for Ultra Large Container Ships (TULC) EUI FP7 project. This is done in a way that results of questionnaire are further reviewed and commented by experienced master of ULCS. Following phenomena are subject of questionnaire and further discussed in the paper: parametric rolling, slamming, whipping, springing, green water and rogue waves. Special attention is given to the definition of rough sea states as well as to measures that ship masters take to avoid them as well as to the manoeuvring in heavy seas. The role of the wave forecast and weather routing software is also discussed.

Construction of Korea Space Weather Prediction Center: VHF Coherent Scatter Radar

  • Hwang, Jung-A;Kwak, Young-Sil;Cho, Kyung-Suk;Kim, Khan-Hyuk;Park, Young-Deuk
    • Bulletin of the Korean Space Science Society
    • /
    • 2008.10a
    • /
    • pp.32.4-33
    • /
    • 2008
  • Korea space weather prediction center (KSWPC) in Korea Astronomy and Space Science Institute (KASI) has been constructing several facilities to observe mid- to low-latitude upper atmospheric/ionospheric phenomena; VHF coherent scattering radar, All-sky Imager, and Scintmon. Those new ionospheric facilities can be integrated to produce more reliable space weather forecast and nowcast with the existing facilities; Solar Flare Telescope (SOFT), Solar Optical Observatory's sunspot telescope and solar imaging spectrograph, and Magnetometer. The specification of KASI VHF coherent scattering radar is 40.8 MHz of target frequency, 200 kHz of bandwidth, 24 kW of peak power. The science goal of this radar is to measure the irregularities in E- and F-layers over Korea, especially sporadic-E, spread-F, and traveling ionospheric disturbance (TID). The radar will be installed at Gyerong in a territory of Korean Air force by early 2009.

  • PDF

Development of a Short-term Rainfall Forecasting Model Using Weather Radar Data (기상레이더 자료를 이용한 단시간 강우예측모형 개발)

  • Kim, Gwang-Seob; Kim, Jong-Pil
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.10
    • /
    • pp.1023-1034
    • /
    • 2008
  • The size and frequency of the natural disaster related to the severe storms are increased for recent decades in all over the globe. The damage from natural disasters such as typhoon, storm and local severe rainfall is very serious in Korea since they are concentrated on summer season. These phenomena will be more frequent in the future because of the impact of climate change related to increment of $CO_2$ concentration and the global warming. To reduce the damage from severe storms, a short-range precipitation forecasting model using a weather radar was developed. The study was conducted as following four tasks: conversion three-dimensional radar data to two-dimensional CAPPI(Constant Altitude Plan Position Indicator) efficiently, prediction of motion direction and velocity of a weather system, estimation of two-dimensional rainfall using operational calibration. Results demonstrated that two-dimensional estimation using weather radar is useful to analyze the spatial characteristics of local storms. If the precipitation forecasting system is linked to the flood prediction system, it should contribute the flood management and the mitigation of flood damages.

Sales Forecasting Model Considering the Local Environment

  • Kim, Chul Soo;Oh, Su Min;Park, So Yeon
    • Communications for Statistical Applications and Methods
    • /
    • v.19 no.6
    • /
    • pp.849-858
    • /
    • 2012
  • Today, local environmental factors has an influence on our society. Local environmental factors, as well as weather-related natural phenomena, social phenomena are also included. In this paper, numeric factors and categorical factors were analyzed, looking for a local environmental factors affecting the company's sales.Sales model by performing a regression analysis based on this was implemented.Sales model considering the local environment had an accuracy of 88.89%.

Strategy of Flood Control Capacity Enhancement on Existing Multipurpose Dams to the Effect of Climate Change (기후변화에 따른 기존 다목적댐의 홍수대응 능력 향상 방안)

  • Kim, U-Gu;Yu, Tae-Sang
    • Journal of the Korean Professional Engineers Association
    • /
    • v.44 no.2
    • /
    • pp.23-28
    • /
    • 2011
  • The assumption that the spatiotemporal distribution of rainfall has stationarity for a long period is not realistic due to frequent unusual weather phenomena. Based on the understanding of the situation, this paper investigates the effects of it to hydraulic structures especially dams and deals measures for it.

  • PDF

The WISE Quality Control System for Integrated Meteorological Sensor Data (WISE 복합기상센서 관측 자료 품질관리시스템)

  • Chae, Jung-Hoon;Park, Moon-Soo;Choi, Young-Jean
    • Atmosphere
    • /
    • v.24 no.3
    • /
    • pp.445-456
    • /
    • 2014
  • A real-time quality control system for meteorological data (air temperature, air pressure, relative humidity, wind speed, wind direction, and precipitation) measured by an integrated meteorological sensor has been developed based on comparison of quality control procedures for meteorological data that were developed by the World Meteorological Organization and the Korea Meteorological Administration (KMA), using time series and statistical analysis of a 12-year meteorological data set observed from 2000 to 2011 at the Incheon site in Korea. The quality control system includes missing value, physical limit, step, internal consistency, persistence, and climate range tests. Flags indicating good, doubtful, erroneous, not checked, or missing values were added to the raw data after the quality control procedure. The climate range test was applied to the monthly data for air temperature and pressure, and its threshold values were modified from ${\pm}2{\sigma}$ and ${\pm}3{\sigma}$ to ${\pm}3{\sigma}$ and ${\pm}6{\sigma}$, respectively, in order to consider extreme phenomena such as heat waves and typhoons. In addition, the threshold values of the step test for air temperature, air pressure, relative humidity, and wind speed were modified to $0.7^{\circ}C$, 0.4 hPa, 5.9%, and $4.6m\;s^{-1}$, respectively, through standard deviation analysis of step difference according to their averaging period. The modified quality control system was applied to the meteorological data observed by the Weather Information Service Engine in March 2014 and exhibited improved performance compared to the KMA procedures.

A Review on the Decision-making Process for Extratropical Transition of Typhoon from an Operational Forecast Point of View (현업예보 관점에서 태풍의 온대저기압화 판단 과정에 대한 고찰)

  • Cha, Eun-Jeong;Shim, Jae-Kwan;Kwon, H.Joe
    • Journal of the Korean earth science society
    • /
    • v.29 no.7
    • /
    • pp.567-578
    • /
    • 2008
  • The extratropically transitioning cyclones have been shown to have a large effect on weather system in the midlatitues and cause sometimes the severe weather phenomena. However, both operational forecasting and research aspect of ET remain a significant challenge. Because it is difficult to distinguish ET stage due to obscure configuration of the cyclone itself. Furthermore, any definition of ET should not only be precise enough to satisfy the needs of the operational and research communities. Therefore, the "operational deterministic process for ET" was proposed and has been used to diagnose both structure and subsequent process of ET in 2007. In this study, it has been examined the maximum wind and SST in the 1st step, satellite image in the 2nd step, sounding in the 3rd step, surface weather chart analysis in the final step. This operational manual has allowed better monitoring and understanding of the changes in the structure as ET occurs.

A Study of the Blocking and Ridge over the Western North Pacific in Winter and its Impact on Cold Surge on the Korean Peninsula (겨울철 북서 태평양에서 발생하는 고위도 블로킹과 중앙 태평양 기압능이 한반도 한파에 미치는 영향 연구)

  • Keon-Hee Cho;Eun-Hee Lee;Baek-Min Kim
    • Atmosphere
    • /
    • v.33 no.1
    • /
    • pp.49-59
    • /
    • 2023
  • Blocking refers to a class of weather phenomena appearing in the mid and high latitudes, whose characteristics are blocked airflow of persistence. Frequently found over the Pacific and Atlantic regions of the Northern Hemisphere, blocking affects severe weather in the surrounding areas with different mechanisms depending on the type of blocking patterns. Along with lots of studies about persistent weather extremes focusing on the specific types of blocking, a new categorization using Rossby wave breaking has emerged. This study aims to apply this concept to the classification of blockings over the Pacific and examine how different wave breakings specify the associated cold weather in the Korean peninsula. At the same time, we investigate a strongly developing ridge around the Pacific by designing a new detection algorithm, where a reversal method is modified to distinguish ridge-type blocking patterns. As result, Kamchatka blocking (KB) and strong ridge over the Central Pacific are observed the most frequently during 20 years (2001~2020) of the studied period, and anomalous low pressures with cold air over the Korean Peninsula are accompanied by blocking events. When it considers the Rossby wave breaking, cyclonic wave-breaking is dominant in KB, which generates low-pressure anomalies over the Korean Peninsula. However, KB with anticyclone wave breaking appears with the high-pressure anomalies over the Korean Peninsula and it generates the warm temperature anomaly. Lastly, the low-pressure anomalies are also generated by the strong ridge over the Central Pacific, which persists for approximately three days and give a significant impact on cold surge on the Korean Peninsula.

Investigating the Effects of Meteorological Disasters on Hydroelectric Power Generation Using a Structural Equation Modeling (구조방정식모형을 이용한 기상재해가 수력발전을 통한 전력 생산에 미치는 영향 분석)

  • Kim, Jiyoung;Byun, Sung ho;Yoo, Jiyoung;Kim, Tae-Woong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.1
    • /
    • pp.33-41
    • /
    • 2023
  • Recently, global warming has accelerated climate change, increased extreme weather phenomena, and increased the frequency and intensity of weather disasters, leading to increasing uncertainty about the power production of new and renewable energy that is sensitive to weather. In fact, it has been reported that a number of damage to hydroelectric power generation have occurred due to weather disasters. Therefore, using the hydroelectric power generation performance data of Chungju Dam, meteorological data of Chungju Meteorological Observatory, and operation data of Chungju Dam, this study investigated the effect of meteorological disasters on hydroelectric power generation through structural equation modeling considering the number and intensity of meteorological disasters per month. The results indicated that the increased drought occurrence affected the decreased hydroelectric power generation by about 38.3 %, however the increased hydroelectric power generation could not explained by the increased flood occurrence. In conclusion, an increased drought occurrence in future may significantly influence hydroelectric power generation.