• Title/Summary/Keyword: Weather Model

Search Result 1,972, Processing Time 0.035 seconds

STOCHASTIC SIMULATION OF DAILY WEATHER VARIABLES

  • Lee, Ju-Young;Kelly brumbelow, Kelly-Brumbelow
    • Water Engineering Research
    • /
    • v.4 no.3
    • /
    • pp.111-126
    • /
    • 2003
  • Meteorological data are often needed to evaluate the long-term effects of proposed hydrologic changes. The evaluation is frequently undertaken using deterministic mathematical models that require daily weather data as input including precipitation amount, maximum and minimum temperature, relative humidity, solar radiation and wind speed. Stochastic generation of the required weather data offers alternative to the use of observed weather records. The precipitation is modeled by a Markov Chain-exponential model. The other variables are generated by multivariate model with means and standard deviations of the variables conditioned on the wet or dry status of the day as determined by the precipitation model. Ultimately, the objective of this paper is to compare Richardson's model and the improved weather generation model in their ability to provide daily weather data for the crop model to study potential impacts of climate change on the irrigation needs and crop yield. However this paper does not refer to the improved weather generation model and the crop model. The new weather generation model improved will be introduced in the Journal of KWRA.

  • PDF

A Skewed Doppler Spectrum Model in a Weather Radar (기상레이다에서의 비대칭 도플러 모델)

  • Lee, Jong-Gil
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.10a
    • /
    • pp.853-856
    • /
    • 2007
  • A weather radar extracts the weather information from the return echoes which consist of scattered electromagnetic wave signals from rain, cloud and dust particles, etc. The acquisition of accurate weather information depends on the operation environment which include the Doppler weather signal and ground clutter characteristics. Since the conventional symmetric weather Doppler model does not represent the measurements in real situations, the improved model is suggested to describe the skewness in the Doppler spectrum model. Using the suggested model, many various weather signals can be simulated to verify the accuracy of signal processing algorithms and the reliability of the extracted weather information

  • PDF

Multi-Site Stochastic Weather Generator for Daily Rainfall in Korea (시공간구조를 가지는 확률적 강우 모형)

  • Kwak, Minjung;Kim, Yongku
    • The Korean Journal of Applied Statistics
    • /
    • v.27 no.3
    • /
    • pp.475-485
    • /
    • 2014
  • A stochastic weather generator based on a generalized linear model (GLM) approach is a commonly used tools to simulate a time series of daily weather. In this paper, we propose a multi-site weather generator with applications to historical data in South Korea. The proposed method extends the approach of Kim et al. (2012) by considering spatial dependence in the model. To reduce this phenomenon, we also incorporate a time series of seasonal mean precipitations of South Korea in the GLM weather generator as a covariate. Spatial dependence was incorporated into the model through a latent Gaussian process. We apply the proposed model to precipitation data provided by 62 stations in Korea from 1973{2011.

An Improved Photovoltaic System Output Prediction Model under Limited Weather Information

  • Park, Sung-Won;Son, Sung-Yong;Kim, Changseob;LEE, Kwang Y.;Hwang, Hye-Mi
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.5
    • /
    • pp.1874-1885
    • /
    • 2018
  • The customer side operation is getting more complex in a smart grid environment because of the adoption of renewable resources. In performing energy management planning or scheduling, it is essential to forecast non-controllable resources accurately and robustly. The PV system is one of the common renewable energy resources in customer side. Its output depends on weather and physical characteristics of the PV system. Thus, weather information is essential to predict the amount of PV system output. However, weather forecast usually does not include enough solar irradiation information. In this study, a PV system power output prediction model (PPM) under limited weather information is proposed. In the proposed model, meteorological radiation model (MRM) is used to improve cloud cover radiation model (CRM) to consider the seasonal effect of the target region. The results of the proposed model are compared to the result of the conventional CRM prediction method on the PV generation obtained from a field test site. With the PPM, root mean square error (RMSE), and mean absolute error (MAE) are improved by 23.43% and 33.76%, respectively, compared to CRM for all days; while in clear days, they are improved by 53.36% and 62.90%, respectively.

Time-Profit Trade-Off of Construction Projects Under Extreme Weather Conditions

  • Senouci, Ahmed;Mubarak, Saleh
    • Journal of Construction Engineering and Project Management
    • /
    • v.4 no.4
    • /
    • pp.33-40
    • /
    • 2014
  • Maximizing the profitability and minimizing the duration of construction projects in extreme weather regions is a challenging objective that is essential for project success. An optimization model is presented herein for the time-profit trade-off analysis of construction projects under extreme weather conditions. The model generates optimal/near optimal schedules that maximize profit and minimize the duration of construction projects in extreme weather regions. The computations in the model are organized into: (1) a scheduling module that develops practical schedules for construction projects, (2) a profit module that computes project costs (direct, indirect, and total) and project profit, and (3) a multi-objective module that determines optimal/near optimal trade-offs between project duration and profit. One example is used to show the impact of extreme weather on construction time and profit. Another example is used to show the model's ability to generate optimal trade-offs between the time and profit of construction projects under extreme weather conditions.

Stochastic Daily Weather Generations for Ungaged Stations (기상자료 미계측 지역의 추계학적 기상발생모형)

  • 강문성;박승우;진영민
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.40 no.1
    • /
    • pp.57-67
    • /
    • 1998
  • A stochastic weather generator which simulate daily precipitation, maximum and minimum daily temperature, relative humidity was developed. The model parameters were estimated using stochastic characteristics analysis of historical data of 71 weather stations. Spatial variations of the parameters for the country were also analyzed. Model parameters of ungauged Sites were determined from parameters of adjacent weather stations using inverse distance method. The model was verified on Suwon and Ulsan weather stations and showed good agreement between simulated and observed data.

  • PDF

Stochastic precipitation modeling based on Korean historical data

  • Kim, Yongku;Kim, Hyeonjeong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.23 no.6
    • /
    • pp.1309-1317
    • /
    • 2012
  • Stochastic weather generators are commonly used to simulate time series of daily weather, especially precipitation amount. Recently, a generalized linear model (GLM) has been proposed as a convenient approach to fitting these weather generators. In this paper, a stochastic weather generator is considered to model the time series of daily precipitation at Seoul in South Korea. As a covariate, global temperature is introduced to relate long-term temporal scale predictor to short-term temporal predictands. One of the limitations of stochastic weather generators is a marked tendency to underestimate the observed interannual variance of monthly, seasonal, or annual total precipitation. To reduce this phenomenon, we incorporate time series of seasonal total precipitation in the GLM weather generator as covariates. It is veri ed that the addition of these covariates does not distort the performance of the weather generator in other respects.

WRF-Based Short-Range Forecast System of the Korea Air Force : Verification of Prediction Skill in 2009 Summer (WRF 기반 공군 단기 수치 예보 시스템 : 2009년 하계 모의 성능 검증)

  • Byun, Ui-Yong;Hong, Song-You;Shin, Hyeyum;Lee, Ji-Woo;Song, Jae-Ik;Hahm, Sook-Jung;Kim, Jwa-Kyum;Kim, Hyung-Woo;Kim, Jong-Suk
    • Atmosphere
    • /
    • v.21 no.2
    • /
    • pp.197-208
    • /
    • 2011
  • The objective of this study is to describe the short-range forecast system of the Korea Air Force (KAF) and to verificate its performace in 2009 summer. The KAF weather prediction model system, based on the Weather Research and Forecasting (WRF) model (i.e., the KAF-WRF), is configured with a parent domain overs East Asia and two nested domains with the finest horizontal grid size of 2 km. Each domain covers the Korean peninsula and South Korea, respectively. The model is integrated for 84 hour 4 times a day with the initial and boundary conditions from National Centers for Environmental Prediction (NCEP) Global Forecast System (GFS) data. A quantitative verification system is constructed for the East Asia and Korean peninsula domains. Verification variables for the East Asia domain are 500 hPa temperature, wind and geopotential height fields, and the skill score is calculated using the difference between the analysis data from the NCEP GFS model and the forecast data of the KAF-WRF model results. Accuracy of precipitation for the Korean penisula domain is examined using the contingency table that is made of the KAF-WRF model results and the KMA (Korea Meteorological Administraion) AWS (Automatic Weather Station) data. Using the verification system, the operational model and parallel model with updated version of the WRF model and improved physics process are quantitatively evaluated for the 2009 summer. Over the East Aisa region, the parallel experimental model shows the better performance than the operation model. Errors of the experimental model in 500 hPa geopotential height near the Tibetan plateau are smaller than errors in the operational model. Over the Korean peninsula, verification of precipitation prediction skills shows that the performance of the operational model is better than that of the experimental one in simulating light precipitation. However, performance of experimental one is generally better than that of operational one, in prediction.

Sensibility by Weather and e-Commerce Purchase Behavior

  • Hyun-Jin Yeo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.4
    • /
    • pp.177-182
    • /
    • 2024
  • A consumer's decisions are made by affection of product. Affection has types: evaluation, mood, emotion and sensibility that means unconscious changes. Previous researches have clarified weather factors affect to sensibility that means weather factors may have causal effects to consumer's decision making. This research utilize weather information from KMA(Korea Meteorological Administration) and SNS geographical information and text to make weather sensibility model, and clarify the model shows significant change to online shop customer's purchase behavior(purchase frequency) by merging customer's address information and geometric information of the model for apply weather model. As a result, a model utilize daily precipitation, sunshine hours, average ground temperature, and average relative humidity makes significant result to e-commerce purchase behavior frequency.

Impact by Estimation Error of Hourly Horizontal Global Solar Radiation Models on Building Energy Performance Analysis on Building Energy Performance Analysis

  • Kim, Kee Han;Oh, John Kie-Whan
    • KIEAE Journal
    • /
    • v.14 no.2
    • /
    • pp.3-10
    • /
    • 2014
  • Impact by estimation error of hourly horizontal global solar radiation in a weather file on building energy performance was investigated in this study. There are a number of weather parameters in a given weather file, such as dry-bulb, wet-bulb, dew-point temperatures; wind speed and direction; station pressure; and solar radiation. Most of them except for solar radiation can be easily obtained from weather stations located on the sites worldwide. However, most weather stations, also including the ones in South Korea, do not measure solar radiation because the measuring equipment for solar radiation is expensive and difficult to maintain. For this reason, many researchers have studied solar radiation estimation models and suggested to apply them to predict solar radiation for different weather stations in South Korea, where the solar radiation is not measured. However, only a few studies have been conducted to identify the impact caused by estimation errors of various solar radiation models on building energy performance analysis. Therefore, four different weather files using different horizontal global solar radiation data, one using measured global solar radiation, and the other three using estimated global solar radiation models, which are Cloud-cover Radiation Model (CRM), Zhang and Huang Model (ZHM), and Meteorological Radiation Model (MRM) were packed into TRY formatted weather files in this study. These were then used for office building energy simulations to compare their energy consumptions, and the results showed that there were differences in the energy consumptions due to these four different solar radiation data. Additionally, it was found that using hourly solar radiation from the estimation models, which had a similar hourly tendency with the hourly measured solar radiation, was the most important key for precise building energy simulation analysis rather than using the solar models that had the best of the monthly or yearly statistical indices.