• Title/Summary/Keyword: Weather Intensity

Search Result 293, Processing Time 0.026 seconds

A Comparative Study of the Rainfall Intensity Between Ground Rain Gauge and Weather Radar (지상우량계와 기상레이더 강우강도의 비교연구)

  • Ryu, Chan-Su;Kang, In-Sook;Lim, Jae-Hwan
    • Journal of Integrative Natural Science
    • /
    • v.4 no.3
    • /
    • pp.229-237
    • /
    • 2011
  • Today they use a weather radar with spatially high resolution in predicting rainfall intensity and utilizing the information for super short-range forecast in order to make predictions of such severe meteorological phenomena as heavy rainfall and snow. For a weather radar, they use the Z-R relation between the reflectivity factor(Z) and rainfall intensity(R) by rainfall particles in the atmosphere in order to estimate intensity. Most used among the various Z-R relation is $Z=200R^{1.6}$ applied to stratiform rain. It's also used to estimate basic rainfall intensity of a weather radar run by the weather center. This study set out to compare rainfall intensity between the reflectivity of a weather radar and the ground rainfall of ASOS(Automatic Surface Observation System) by analyzing many different cases of heavy rain, analyze the errors of different weather radars and identify their problems, and investigate their applicability to nowcasting in case of severe weather.

A Research on Ship Speed Performance (선박의 속력성능에 관한 연구)

  • 권영중
    • Journal of Ocean Engineering and Technology
    • /
    • v.17 no.2
    • /
    • pp.67-71
    • /
    • 2003
  • Using motions (Maruo) and wave reflection (the author), speed loss due to wind (van Berlekom) and ITTC standard spectrum, and various effects of weather(:such as weather intensity, ship type, ship size and draught) on ship speed performance at sea were investigated. Further, a comparison of the relative effects of weather and hull roughness on speed loss was also studied for a VLCC.

CME and radio characteristics of making large solar proton events

  • Hwang, Jung-A;Cho, Kyung-Suk;Bong, Su-Chan;Kim, Su-Jin;Park, Young-Deuk
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.35 no.1
    • /
    • pp.33.2-33.2
    • /
    • 2010
  • We have investigated a relationship among the solar proton events (SPEs), coronal mass ejections (CMEs) and solar flares during the solar cycle 23 (1997-2006). Using 63 SPE dataset, we found that SPE rise time, duration time, and decrease times depend on CME speed and SPE peak intensity depends on the CME earthward direction parameter as well as CME speed and x-ray flare intensity. While inspecting the relation between SPE peak intensity and the CME earthward direction parameter, we found that there are two groups: first group consists of large 6 SPEs (> 10,000 pfu at >10 MeV proton channel of GOES satellite) and shows a very good correlation (cc=0.65) between SPE peak intensity and CME earthward direction parameter. The second group has a relatively weak SPE peak intensity and shows poor correlation between SPE peak intensity and the CME earthward direction parameter (cc=0.01). By investigating characteristics of 6 SPEs in the first group, we found that there are special common conditions of the extremely large proton events (group 1); (1) all the SPEs are associated with very fast halo CME (>1400km/s), (2) they are almost located at disk region, (3) they also accompany large flare (>M7), (4) all they are preceded by another wide CMEs, and (5) they all show helmet streamer nearby the main CME. In this presentation, we will give details of the energy spectra of the 6 SPE events from the ERNE/HED aboard the Solar and Heliospheric Observatory (SOHO), and onset time comparison among the SPE, flare, type II burst, and CME.

  • PDF

Validations of Typhoon Intensity Guidance Models in the Western North Pacific (북서태평양 태풍 강도 가이던스 모델 성능평가)

  • Oh, You-Jung;Moon, Il-Ju;Kim, Sung-Hun;Lee, Woojeong;Kang, KiRyong
    • Atmosphere
    • /
    • v.26 no.1
    • /
    • pp.1-18
    • /
    • 2016
  • Eleven Tropical Cyclone (TC) intensity guidance models in the western North Pacific have been validated over 2008~2014 based on various analysis methods according to the lead time of forecast, year, month, intensity, rapid intensity change, track, and geographical area with an additional focus on TCs that influenced the Korean peninsula. From the evaluation using mean absolute error and correlation coefficients for maximum wind speed forecasts up to 72 h, we found that the Hurricane Weather Research and Forecasting model (HWRF) outperforms all others overall although the Global Forecast System (GFS), the Typhoon Ensemble Prediction System of Japan Meteorological Agency (TEPS), and the Korean version of Weather and Weather Research and Forecasting model (KWRF) also shows a good performance in some lead times of forecast. In particular, HWRF shows the highest performance in predicting the intensity of strong TCs above Category 3, which may be attributed to its highest spatial resolution (~3 km). The Navy Operational Global Prediction Model (NOGAPS) and GFS were the most improved model during 2008~2014. For initial intensity error, two Japanese models, Japan Meteorological Agency Global Spectral Model (JGSM) and TEPS, had the smallest error. In track forecast, the European Centre for Medium-Range Weather Forecasts (ECMWF) and recent GFS model outperformed others. The present results has significant implications for providing basic information for operational forecasters as well as developing ensemble or consensus prediction systems.

Application of Vertical Grid-nesting to the Tropical Cyclone Track and Intensity Forecast

  • Kim, Hyeon-Ju;Cheong, Hyeong-Bin;Lee, Chung-Hui
    • Journal of the Korean earth science society
    • /
    • v.40 no.4
    • /
    • pp.382-391
    • /
    • 2019
  • The impact of vertical grid-nesting on the tropical cyclone intensity and track forecast was investigated using the Weather Research and Forecast (WRF) version 3.8 and the initialization method of the Structure Adjustable Balanced Bogus Vortex (SABV). For a better resolution in the central part of the numerical domain, where the tropical cyclone of interest is located, a horizontal and vertical nesting technique was employed. Simulations of the tropical cyclone Sanba (16th in 2012) indicated that the vertical nesting had a weak impact on the cyclone intensity and little impact on the track forecast. Further experiments revealed that the performance of forecast was quite sensitive to the horizontal resolution, which is in agreement with previous studies. The improvement is due to the fact that horizontal resolution can improve forecasts not only on the tropical cyclone-scale but also for large-scale disturbances.

Relationship Between Solar Proton Events and Corona Mass Ejection Over the Solar Cycle 23 (태양 주기 23 기간 동안 태양 고에너지 양성자 이벤트와 코로나 물질 방출 사이의 상관관계)

  • Hwang, Jung-A;Lee, Jae-Jin;Kim, Yeon-Han;Cho, Kyung-Suk;Kim, Rok-Sun;Moon, Yong-Jae;Park, Young-Deuk
    • Journal of Astronomy and Space Sciences
    • /
    • v.26 no.4
    • /
    • pp.479-486
    • /
    • 2009
  • We studied the solar proton events (SPEs) associated with coronal mass ejections (CMEs) during the solar cycle 23 (1997-2006). Using 63 SPE dataset, we investigated the relationship among SPE, flare, and CME, and found that (1) SPE rise time and duration time depend on CME speed and the earthward direction parameter of the CME, and (2) the SPE peak intensity depends on CME speed and X-ray Flare intensity. While inspecting the relation between SPE peak intensity and the direction parameter, we found there are two groups: first group consists of large six SPEs (> 10,000 pfu at > 10 MeV proton channel of GOES satellite) and shows strong correlation (cc = 0.65) between SPE peak intensity and CME direction parameter. The second group has a weak intensity and shows poor correlation between SPE peak intensity and the direction parameter (cc = 0.01). By investigating characteristics of the first group, we found that all the SPEs are associated with very fast halo CME (> 1400km/s) and also they are mostly located at central region and within ${\pm}20^{\circ}$ latitude and ${\pm}30^{\circ}$ longitude strip.

Spatial Distribution of Urban Heat Island based on Local Climate Zone of Automatic Weather Station in Seoul Metropolitan Area (자동기상관측소의 국지기후대에 근거한 서울 도시 열섬의 공간 분포)

  • Hong, Je-Woo;Hong, Jinkyu;Lee, Seong-Eun;Lee, Jaewon
    • Atmosphere
    • /
    • v.23 no.4
    • /
    • pp.413-424
    • /
    • 2013
  • Urban Heat Island (UHI) intensity is one of vital parameters in studying urban boundary layer meteorology as well as urban planning. Because the UHI intensity is defined as air temperature difference between urban and rural sites, an objective sites selection criterion is necessary for proper quantification of the spatial variations of the UHI intensity. This study quantified the UHI intensity and its spatial pattern, and then analyzed their connections with urban structure and metabolism in Seoul metropolitan area where many kinds of land use and land cover types coexist. In this study, screen-level temperature data in non-precipitation day conditions observed from 29 automatic weather stations (AWS) in Seoul were analyzed to delineate the characteristics of UHI. For quality control of the data, gap test, limit test, and step test based on guideline of World Meteorological Organization were conducted. After classifying all stations by their own local climatological properties, UHI intensity and diurnal temperature range (DTR) are calculated, and then their seasonal patterns are discussed. Maximum UHI intensity was $4.3^{\circ}C$ in autumn and minimum was $3.6^{\circ}C$ in spring. Maximum DTR appeared in autumn as $3.8^{\circ}C$, but minimum was $2.3^{\circ}C$ in summer. UHI intensity and DTR showed large variations with different local climate zones. Despite limited information on accuracy and exposure errors of the automatic weather stations, the observed data from AWS network represented theoretical UHI intensities with difference local climate zone in Seoul.

A Case Study on Rainfall Observation and Intensity Estimation using W-band FMCW Radar (W밴드 FMCW 레이더를 이용한 강우 관측 및 강우 강도 추정 사례 연구)

  • Jang, Bong-Joo;Lim, Sanghun
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.12
    • /
    • pp.1430-1437
    • /
    • 2019
  • In this paper, we proposed a methodology for estimating rainfall intensity using a W-band FMCW automotive radar signal which is the core technology of autonomous driving car. By comparing and analyzing the results of rainfall and non-rainfall observation, we found that the reflection intensity of the automotive radar is changed with rainfall intensity. We could confirm the possibility of deriving the quantitative precipitation estimation using the methodology derived from this result. In addition it can be possible to develop a new paradigm of precipitation observation technique by observing various events together with the weather radar and the ground rainfall observation equipment.

Prediction of Speed by Rain Intensity using Road Weather Information System and Vehicle Detection System data (도로기상정보시스템(RWIS)과 차량검지기(VDS) 자료를 이용한 강우수준별 통행속도예측)

  • Jeong, Eunbi;Oh, Cheol;Hong, Sungmin
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.12 no.4
    • /
    • pp.44-55
    • /
    • 2013
  • Intelligent transportation systems allow us to have valuable opportunities for collecting reliable wide-area coverage traffic and weather data. Significant efforts have been made in many countries to apply these data. This study identifies the critical points for classifying rain intensity by analyzing the relationship between rainfall and the amount of speed reduction. Then, traffic prediction performance by rain intensity level is evaluated using relative errors. The results show that critical points are 0.4mm/5min and 0.8mm/5min for classifying rain intensity (slight, moderate, and heavy rain). The best prediction performance is observable when previous five-block speed data is used as inputs under normal weather conditions. On the other hand, previous two or three-block speed data is used as inputs under rainy weather conditions. The outcomes of this study support the development of more reliable traffic information for providing advanced traffic information service.

A Study on the Doppler Signal Simulation of a Weather Radar (기상레이다 도플러 신호 모의구현에 관한 연구)

  • Lee, Jong-Gil
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.06a
    • /
    • pp.561-564
    • /
    • 2007
  • Recently, The detection of weather conditions and weather related hazards with a weather radar are being actively investigated based on the echo intensity and the Doppler spectrum analysis. For this purpose, many types of simulated weather signals are needed for investigation. Therefore, this paper analyzed the method to simulate the many weather radar signals.

  • PDF