• 제목/요약/키워드: Weather Index

검색결과 474건 처리시간 0.022초

MODIS Fire Spot 정보와 5km 기상 재분석 자료를 활용한 접근불능지역의 산불기상위험지수 산출 모형 개발 (Development of Fire Weather Index Model in Inaccessible Areas using MOD14 Fire Product and 5km-resolution Meteorological Data)

  • 원명수;장근창;윤석희
    • 한국지리정보학회지
    • /
    • 제21권3호
    • /
    • pp.189-204
    • /
    • 2018
  • 본 연구는 북한 및 비무장지대 등 접근불능지역에 대한 기상에 의한 산불발생예측 알고리즘을 개발하고, 실제 현장과 현업에서 활용할 수 있는 실시간 산불위험예보 체계를 개발하는데 있다. 산불기상위험지수 산출 모형 개발을 위해 자료의 취득과 검증을 위한 현장조사가 불가능하다는 연구적 한계가 존재하므로, 이를 해결하기 위해 MODIS 위성자료를 활용하여 접근이 불가능한 지역의 산불발화지점(fire spot)을 과학적 근거를 가지고 추정하였다. 추출된 산불발화지점을 대상으로 기상청에서 생산된 과거 기상 재분석자료(5㎞ 해상도)를 활용하여 산불발화지점에 대한 기상특성을 추출하여 데이터베이스화 하였다. 접근불능지역의 산불발화지점에서 추출된 기상요소들은 산불발생과 기상요인들과의 통계적 상관성과 산불발생 유무(산불발생 1, 산불 미발생 0)를 추정할 수 있는 로지스틱 회귀모형을 활용하여 실시간 기상변화에 의한 산불기상위험지수(Fire Weather Index, FWI)를 개발하였다. FWI 모형의 예측정확도는 66.6%로 나타나 모형의 적합도는 비교적 높은 것으로 나타났다. 이 연구결과는 남 북한의 산불 방지를 위한 정책 입안자들의 의사결정에 유용하게 활용될 것으로 기대한다.

디지털예보자료와 Daily Weather Index (DWI) 모델을 적용한 한반도의 산불발생위험 예측 (Prediction of Forest Fire Danger Rating over the Korean Peninsula with the Digital Forecast Data and Daily Weather Index (DWI) Model)

  • 원명수;이명보;이우균;윤석희
    • 한국농림기상학회지
    • /
    • 제14권1호
    • /
    • pp.1-10
    • /
    • 2012
  • 본 연구는 디지털예보(현 동네예보) 자료를 활용하여 우리나라의 산불위험예보의 정확도 향상은 물론 기상에 의한 산불위험지수를 산출하여 한반도의 산불위험예보 체계를 구축하는데 있다. 한반도 지역의 산불발생위험을 나타내는 기상지수(daily weather index, DWI)를 산출하기 위해 기상청의 5km 격자간격의 디지털예보자료를 이용하였다. DWI 분석을 위해 온도, 습도, 풍속 UV, 1시간 강우량, 12시간 강우량을 대상으로 한반도 전역에 대한 기상요소별 기후분포도를 제작하였다. 한반도의 기상에 의한 일일 DWI 산출을 위해 대형산불이 자주 발생하는 강원도 지역의 산불발생확률식 $[1+{\exp}\{-(2.494+(0.004{\times}T_{max})-(0.008{\times}EF))\}]^{-1}$을 적용하였다. 기상예보자료의 예측정확도 검증을 위해 RDAPS, 디지털예보, 실황자료 모두 2005년 12월 12일 15시 자료를 대상으로 비교 분석한 결과 76개 기상관측소에서 관측한 실황자료에 대응하는 기상요소별 디지털예보의 예측값이 RDAPS 추출 자료보다 향상된 예측결과를 보였다. 산불위험예보 정확도 검증을 위해 사용한 실황자료와 디지털예보자료의 평균오차는 평균 기온 $0.2^{\circ}C$, 실효습도 2.4%, 평균풍속 2.2m/s로 나타나 큰 변이는 없었지만, 평균풍속에서 실측값과 예측값간의 차이가 있는 것으로 나타났다. 디지털예보자료를 활용할 경우 RDAPS 자료보다 산불위험예보의 정확도가 크게 향상되는 결과를 얻을 수 있었으며, 산불위험예보의 정확도 검증을 위해 실황자료와 디지털예보자료를 적용하여 예측된 전국 233개 시 군 구의 평균 산불위험지수를 각각 추출하여 비교한 결과 $R^2$=0.854의 높은 정확도를 보였다. 산불위험도가 가장 높은 15시의 실제 76개소에서 관측한 기상자료를 적용하여 전국의 산불위험지수를 예측한 값은 70.5로 디지털예보자료를 적용하여 예측한 위험지수(70.0)와 0.5의 오차를 보여 예측력이 개선되었음을 확인할 수 있었다. 따라서 디지털예보를 적용할 경우 실황자료와의 예측력이 검증된 만큼 향후 기상에 의한 한반도의 산불발생위험지수를 보다 정확하게 계산하는데 유용하게 이용할 수 있을 것으로 기대된다.

대기상태를 고려한 단기부하예측에 관한 연구 (A study of short-term load forecasting in consideration of the weather conditions)

  • 김준현;황갑주
    • 전기의세계
    • /
    • 제31권5호
    • /
    • pp.368-374
    • /
    • 1982
  • This paper describes a combined algorithm for short-term-load forecating. One of the specific features of this algorithm is that the base, weather sensitive and residual components are predicted respectively. The base load is represented by the exponential smoothing approach and residual load is represented by the Box-Jenkins methodology. The weather sensitive load models are developed according to the information of temperature and discomfort index. This method was applied to Korea Electric Company and results for test periods up to three years are given.

  • PDF

A study on the characteristics of applying oversampling algorithms to Fosberg Fire-Weather Index (FFWI) data

  • Sang Yeob Kim;Dongsoo Lee;Jung-Doung Yu;Hyung-Koo Yoon
    • Smart Structures and Systems
    • /
    • 제34권1호
    • /
    • pp.9-15
    • /
    • 2024
  • Oversampling algorithms are methods employed in the field of machine learning to address the constraints associated with data quantity. This study aimed to explore the variations in reliability as data volume is progressively increased through the use of oversampling algorithms. For this purpose, the synthetic minority oversampling technique (SMOTE) and the borderline synthetic minority oversampling technique (BSMOTE) are chosen. The data inputs, which included air temperature, humidity, and wind speed, are parameters used in the Fosberg Fire-Weather Index (FFWI). Starting with a base of 52 entries, new data sets are generated by incrementally increasing the data volume by 10% up to a total increase of 100%. This augmented data is then utilized to predict FFWI using a deep neural network. The coefficient of determination (R2) is calculated for predictions made with both the original and the augmented datasets. Suggesting that increasing data volume by more than 50% of the original dataset quantity yields more reliable outcomes. This study introduces a methodology to alleviate the challenge of establishing a standard for data augmentation when employing oversampling algorithms, as well as a means to assess reliability.

Correlation Analysis between Global Warming Index and Its Two Main Causes (space weather and green house effects) from 1868 to 2005

  • Moon, Yong-Jae
    • 한국우주과학회:학술대회논문집(한국우주과학회보)
    • /
    • 한국우주과학회 2008년도 한국우주과학회보 제17권2호
    • /
    • pp.24.2-24.2
    • /
    • 2008
  • We have examined the relative contributions of representative space weather proxies (geomagnetic aa index) to global warming (Global temperature anomaly) and compared them with that of green house effect characterized CO2 content from 1868 to 2005. For this we used Hadcrut3 temperature anomaly (Ta) data, aa index taken at two anti-podal subauroral stations (Canberra Australia and hartland England), and the CO2 data come from historical ice core records. From the comparison between Ta and aa index, we found several interesting results: (1) the linear correlation coefficient between two parameters increases until 1990 and then decreases rapidly, and (2) the scattered plots between two parameters shows different patterns before and after 1990. A partial correlation of Ta and two quantities (aa, CO2) also shows that the geomagnetic effect (aa index) is dominant until about 1990 and the CO2 effect becomes much more important after then. These results imply that the green house effect become very important since at least 1990. For a further analysis, we simply assume that Ta (total) = Ta (aa) + Ta (CO2) and made a linear regression between Ta and aa index from 1868 to 1990. A linear model is then made from the linear regression between energy consumption (a proxy of CO2 effect) and Ta (total) - Ta (aa) since 1990. This linear model makes it possible to predict the temperature anomaly in 2030, about 1 degree higher than the present temperature, which is much larger than in the previous century.

  • PDF

Association between Solar Variability and Teleconnection Index

  • Kim, Jung-Hee;Chang, Heon-Young
    • Journal of Astronomy and Space Sciences
    • /
    • 제36권3호
    • /
    • pp.149-157
    • /
    • 2019
  • In this study, we investigate the associations between the solar variability and teleconnection indices, which influence atmospheric circulation and subsequently, the spatial distribution of the global pressure system. A study of the link between the Sun and a large-scale mode of climate variability, which may indirectly affect the Earth's climate and weather, is crucial because the feedbacks of solar variability to an autogenic or internal process should be considered with due care. We have calculated the normalized cross-correlations of the total sunspot area, the total sunspot number, and the solar North-South asymmetry with teleconnection indices. We have found that the Southern Oscillation Index (SOI) index is anti-correlated with both solar activity and the solar North-South asymmetry, with a ~3-year lag. This finding not only agrees with the fact that El $Ni{\tilde{n}}o$ episodes are likely to occur around the solar maximum, but also explains why tropical cyclones occurring in the solar maximum periods and in El $Ni{\tilde{n}}o$ periods appear similar. Conversely, other teleconnection indices, such as the Arctic Oscillation (AO) index, the Antarctic Oscillation (AAO) index, and the Pacific-North American (PNA) index, are weakly or only slightly correlated with solar activity, which emphasizes that response of terrestrial climate and weather to solar variability are local in space. It is also found that correlations between teleconnection indices and solar activity are as good as correlations resulting from the teleconnection indices themselves.

DYNAMIC AUTOCORRELATION TEMPERATURE MODELS FOR PRICING THE WEATHER DERIVATIVES IN KOREA

  • Choi, H.W;Chung, S.K
    • Journal of applied mathematics & informatics
    • /
    • 제9권2호
    • /
    • pp.771-785
    • /
    • 2002
  • Many industries like energy, utilities, ice cream and leisure sports are closely related to the weather. In order to hedge weather related risks, they invest their assets with portfolios like option, coupons, future, and other weather derivatives. Among weather related derivatives, CDD and HDD index options are mainly transacted between companies. In this paper, the autocorrelation system of temperature will be checked for several cities in Korea and the parameter estimation will be carried based on the maximum likelihood estimation. Since the log likelihood increase as the number of parameters increases, we adopt the Schwarz information criterion .

가뭄빈도해석을 통한 가뭄심도-지속시간-생기빈도 곡선의 유도 (Derivation of Drought Severity-Duration-Frequency Curves Using Drought Frequency Analysis)

  • 이주헌;김창주
    • 한국수자원학회논문집
    • /
    • 제44권11호
    • /
    • pp.889-902
    • /
    • 2011
  • 본 연구에서는 한반도에서 발생했던 과거 가뭄사상의 정량적 평가를 위한 가뭄심도-지속기간-생기빈도(Severity-Duration-Frequency, SDF) 곡선을 유도하기 위해서 가뭄지수를 이용한 빈도해석을 실시하였다. 분석지점으로는 4대강 유역을 중심으로 하는 기상청 산하의 서울, 대전, 대구, 광주, 부산관측소를 선정하였으며 강수자료는 1974~2010년(37년)의 강수 자료를 이용하였다. 가뭄빈도해석에는 기상학적 가뭄지수인 SPI (Standardized Precipitation Index)를 선정하였으며 확률분포형에 대한 적합도 검정에서는 일반극치분포(GEV, Generalized Extreme Value)가 최적의 확률분포형으로 선정되었다. 가뭄지수의 빈도해석 통하여 유도된 주요 관측소별 SDF (Severity-Duration-Frequency) 곡선을 이용하여 과거의 주요 가뭄사상에 대한 재현기간을 제시하였으며 1994~1995년 가뭄의 경우 남부지방을 중심으로 하는 극심한 가뭄으로서 광주관측소에서는 50~100년, 부산관측소에서는 100~200년의 높은 재현기간을 나타내었다. 그밖에 1988~1989년 가뭄의 경우 서울관측소에서는 300년의 재현기간을 나타내었다.

기상특성에 따른 교통사고 안전성 평가지표 개발 (고속도로를 대상으로) (Development of Traffic Accident Safety Index under Different Weather Conditions)

  • 박준태;홍지연;이수범
    • 대한교통학회지
    • /
    • 제28권1호
    • /
    • pp.157-163
    • /
    • 2010
  • 기상상태에 따른 교통사고발생 및 사고심각도는 밀접한 관계가 있음이 잘 알려져있다. 최근고속도로에서 교통 안전성 평가지표 및 시스템의 개발은 사고 치명도를 줄이고자 접근하는 것이다. 본 연구에서는 도로선형 요소와 기상 상태를 고려한 교통사고 영향 요인을 분석하여 규명하고자 한다. 기상상태요인과 도로요인과의 교통사고 발생 관계를 규명하기 위하여 과거사고이력자료를 이용하여 판별분석을 수행하였으며 눈, 맑음, 비, 안개, 흐림의 5가지 유형에 대해 도로 구성요소인 노면과 경사도를 통해 구분하였다. 그 결과 콘크리트 노면과 하향경사 3%이상인 구간에서 각 기상상태 별 사고영향이 다르며 이러한 주행환경에서는 시정거리의 감소와 정지거리의 증가가 주행 위험요인으로 발생할 수 있는 구간이다. 본 연구에서는 기상악화시 콘크리트 노면과 하향경사가 형성된 구간이 평상시 보다 주행시 주의를 필요로 하는 구간임을 분석하였으며 분류함수의 계수 비교를 통해 영향지표를 개발하였다.

Application of deep convolutional neural network for short-term precipitation forecasting using weather radar-based images

  • Le, Xuan-Hien;Jung, Sungho;Lee, Giha
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2021년도 학술발표회
    • /
    • pp.136-136
    • /
    • 2021
  • In this study, a deep convolutional neural network (DCNN) model is proposed for short-term precipitation forecasting using weather radar-based images. The DCNN model is a combination of convolutional neural networks, autoencoder neural networks, and U-net architecture. The weather radar-based image data used here are retrieved from competition for rainfall forecasting in Korea (AI Contest for Rainfall Prediction of Hydroelectric Dam Using Public Data), organized by Dacon under the sponsorship of the Korean Water Resources Association in October 2020. This data is collected from rainy events during the rainy season (April - October) from 2010 to 2017. These images have undergone a preprocessing step to convert from weather radar data to grayscale image data before they are exploited for the competition. Accordingly, each of these gray images covers a spatial dimension of 120×120 pixels and has a corresponding temporal resolution of 10 minutes. Here, each pixel corresponds to a grid of size 4km×4km. The DCNN model is designed in this study to provide 10-minute predictive images in advance. Then, precipitation information can be obtained from these forecast images through empirical conversion formulas. Model performance is assessed by comparing the Score index, which is defined based on the ratio of MAE (mean absolute error) to CSI (critical success index) values. The competition results have demonstrated the impressive performance of the DCNN model, where the Score value is 0.530 compared to the best value from the competition of 0.500, ranking 16th out of 463 participating teams. This study's findings exhibit the potential of applying the DCNN model to short-term rainfall prediction using weather radar-based images. As a result, this model can be applied to other areas with different spatiotemporal resolutions.

  • PDF