• Title/Summary/Keyword: Wearable Platform

Search Result 78, Processing Time 0.023 seconds

The Effective Application Management Using Characteristics of Tizen Wearable Platform (타이젠 웨어러블 플랫폼의 특성을 이용한 효율적인 어플리케이션 관리)

  • Ham, Dong-eup
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.10a
    • /
    • pp.318-321
    • /
    • 2017
  • Most of wearable platforms(i. e. Samsung Gear, Android Wear) are using most of Tizen mobile platform features without any changes. However wearable devices have unique characteristics due to wearable type, small battery, screen shape, poor network and relative short but frequent user interfaces. In general, a wearable device has a process to be paired with the mobile device, which includes capability exchange that includes information such as device model name, network capability (3G, LTE, Wi-Fi and so on), manufacturer and supported languages. In other word, a wearable device depends heavily on the companion device (i. e. phone, tablet), so wearable platform should consider this. In this paper, we provide the effective application management mechanism using these characteristics of wearable platform to enhance user experience and to reduce sluggish of wearable platform.

  • PDF

An multiple energy harvester with an improved Energy Harvesting platform for Self-powered Wearable Device (웨어러블 서비스를 위한 다중 발전소자 기반 에너지 하베스터 플랫폼 구현)

  • Park, Hyun-Moon;Kim, Byung-Soo;Kim, Dong-Sun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.13 no.1
    • /
    • pp.153-162
    • /
    • 2018
  • The importance of energy harvesting technique is increasing due to the elevated level of demand for sustainable power sources for wearable device applications. In this study, we developed an Energy Harvesting wearable Platform(EH-P) architecture which is used in the design of a multi-energy source based on TENG. The proposed switching circuit produces power with higher current at lower voltage from energy harvesting sources with lower current at higher voltage. This can powers microcontrollers for a short period of time by using PV and TENG complementarily placed under hard conditions for the sources such as indoors. As a result, the whole interface circuit is completely self-powered with this makes it possible to run of sensing on a Wearable device platform. It was possible to increase the wearable device life time by supplying more than 29% of the power consumption to wearable devices. The results presented in this paper show the potential of multi-energy harvesting platform for use in wearable harvesting applications, provide a means of choosing the energy harvesting source.

Artificial intelligence wearable platform that supports the life cycle of the visually impaired (시각장애인의 라이프 사이클을 지원하는 인공지능 웨어러블 플랫폼)

  • Park, Siwoong;Kim, Jeung Eun;Kang, Hyun Seo;Park, Hyoung Jun
    • Journal of Platform Technology
    • /
    • v.8 no.4
    • /
    • pp.20-28
    • /
    • 2020
  • In this paper, a voice, object, and optical character recognition platform including voice recognition-based smart wearable devices, smart devices, and web AI servers was proposed as an appropriate technology to help the visually impaired to live independently by learning the life cycle of the visually impaired in advance. The wearable device for the visually impaired was designed and manufactured with a reverse neckband structure to increase the convenience of wearing and the efficiency of object recognition. And the high-sensitivity small microphone and speaker attached to the wearable device was configured to support the voice recognition interface function consisting of the app of the smart device linked to the wearable device. From experimental results, the voice, object, and optical character recognition service used open source and Google APIs in the web AI server, and it was confirmed that the accuracy of voice, object and optical character recognition of the service platform achieved an average of 90% or more.

  • PDF

A Study On The Wearable Embedded System Platform (입을 수 있는 내장형 시스템 플랫품에 관한 연구)

  • Yoo, Jin-Ho;Jeong, Hyun-Tae;Cho, Il-Yeon;Lee, Sang-Ho;Han, Dong-Won
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.12B
    • /
    • pp.831-837
    • /
    • 2005
  • Personal general purpose computer(PC) has been evolved from desktop to portable mobile device such as tablet PC and PDA. Technology innovation on semiconductor have made it possible to package a reasonably Powerful Processor and memory subsystem with advanced input/output devices. At last these subsystems are miniaturized into wearable system. Wearable computer has recently gained attention as the post PC in the ubiquitous environment. Wearable computing becomes more and more feasible and receives growing attention throughout industry and the consumer marketplaces. This paper proposed and developed WPS that has multimedia features and network features as a wearable embedded platform. We explain the form, overall architecture, functions and user applications of this WPS. This paper also discusses the form of next generation computer platform with intuitive user interfaces and well designed applications in the future.

A Real-Time Localization Platform Design in WUSB Services based on IEEE 802.15.6 WBAN Protocol for Wearable Computer Systems (IEEE 802.15.6 표준 기반 무선 USB 서비스를 위한 실시간 위치인식 플랫폼 설계)

  • Hur, Kyeong;Sohn, Won-Sung
    • Journal of Korea Multimedia Society
    • /
    • v.15 no.7
    • /
    • pp.885-890
    • /
    • 2012
  • In this Paper, we propose a Real-Time Localization Platform Built on WUSB (Wireless USB) over WBAN (Wireless Body Area Networks) protocol required for Wearable Computer systems. Proposed Real-Time Localization Platform Technique is executed on the basis of WUSB over WBAN protocol at each sensor node comprising peripherals of a wearable computer system. In the Platform, a WUSB host calculates the location of a receiving sensor node by using the difference between the times at which the sensor node received different WBAN beacon frames sent from the WUSB host. And the WUSB host interprets motion of the virtual object.

Modular platform techniques for multi-sensor/communication of wearable devices (웨어러블 디바이스를 위한 다중 센서/통신용 모듈형 플랫폼 기술)

  • Park, Sung Hoon;Kim, Ju Eon;Yoon, Dong-Hyun;Baek, Kwang-Hyun
    • Journal of IKEEE
    • /
    • v.21 no.3
    • /
    • pp.185-194
    • /
    • 2017
  • In this paper, a modular platform for wearable devices is proposed which can be easily assembled by exchanging functions according to various field and environment conditions. The proposed modular platform consists of a 32-bit RISC CPU, a 32-bit symmetric multi-core processor, and a 16-bit DSP. It also includes a plug & play features which can quickly respond to various environments. The sensing and communication modules are connected in the form of a chain. This work is implemented in a standard 130 nm CMOS technology and the proposed modular wearable platforms are verified with temperature and humidity sensors.

Development of an oneM2M-compliant IoT Platform for Wearable Data Collection

  • Ahn, Il Yeup;Sung, Nak-Myoung;Lim, Jae-Hyun;Seo, Jeongwook;Yun, Il Dong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.1
    • /
    • pp.1-15
    • /
    • 2019
  • Internet of Things (IoT) is commonly referred to as a future internet technology to provide advanced services by interconnecting physical and virtual things, collecting and using many data from them. The IoT platform is a server platform with a common architecture to collect and share the data independent of the IoT devices and services. Recently, oneM2M, the global standards initiative for Machine-to-Machine (M2M) communications and the IoT announced the availability of oneM2M Release 2 specifications. Accordingly, this paper presents a new oneM2M-compliant IoT platform called Mobius 2.0 and proposes its application to collect the biosignal data from wearable IoT devices for emotion recognition. Experimental results show that we can collect various biosignal data seamlessly and extract meaningful features from the biosignal data to recognize two emotions of joy and sadness.

Building a Big Data Platform Using Real-time Wearable Devices and Cases of Safety Accidents in KOREA

  • LEE, Ki Seok;CHOI, Youngjin;LEE, Kyung-cheun;SHIN, Yoonseok;YOO, Wi Sung
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.375-381
    • /
    • 2022
  • Safety accidents are of concern during construction projects, even given the recent innovations in digital technologies. These projects remain focused on overcoming specific and limited applications on construction sites. For this reason, the development of an inclusive safety management system has become crucial. This study aims to build a Big Data platform to inform decisions on how to proactively eliminate worker hazards on construction sites. The platform consists of about 100,000 real records and a real-time monitored database featuring various safety indices, such as workers' altitudes, heart rates, and fatigability during construction, which are determined through various wearable devices. The data types are customized and integrated by a research team in accordance with the characteristics of a specific project using hypertext transfer protocol (HTTP). The results can be helpful as efficient tools to ensure successful safety management in complex construction situations. This study is expected to provide three significant contributions to the field, including real-time fatigability analysis and tracking of workers on-site; providing early GPS-based warnings to workers who might be accessing dangerous spaces or places; and monitoring the workers' health indices, based on details from 100,000 cases.

  • PDF

Analysis on the development trend of flexible materials and platforms for wearable devices based on fiber - Based on domestic & international patent data - (섬유기반의 웨어러블 디바이스용 유연소재 및 플랫폼 개발동향 분석 -국내외 특허분석을 중심으로-)

  • Han, Hyunjung;Jang, Myoungjin;Lee, Yongsung
    • Journal of the Korea Fashion and Costume Design Association
    • /
    • v.22 no.1
    • /
    • pp.33-44
    • /
    • 2020
  • The purpose of this study is to guide the research direction for securing the competitiveness of the textile industry by analyzing the trends of patent technology development for flexible materials and platform technologies of domestic and overseas textiles used for wearable devices. The study is based on patents from Korea (KIPO), USA (USPTO), Japan (JPO), Europe (EPO), PCT (WO), and China (SIPO), which were registered as of December 31, 2017. The analysis utilized 3,643 patents acquired from the WINTELIPS search DB. The technology classification system for patent analysis was divided into evangelist-based textile technology developments: human body (AA), fiber attachment patch development (AB), and service platform development (AC). The analysis findings are as follows: 1. The development of flexible materials and platform technologies for textile-based wearable devices has increased since 2000. In particular, China (SIPO) had the most patents. 2. In China, Japan, and Korea, most patent applicants are applied for by natives, but the US has a high proportion of foreigners applying for patents. 3. As for the amount of development of the evangelist-based textile technology (AA) was the most common with 1,203 (33%) cases. As a result of the above IP historical analysis, it can be seen that as a result of the global competition, domestic companies need to acquire IRP and standard technology, and promote commercialization by applying their products to smart wearables devices and other products.

Collocated Wearable Interaction for Audio Book Application on Smartwatch and Hearables

  • Yoon, Hyoseok;Son, Jangmi
    • Journal of Multimedia Information System
    • /
    • v.7 no.2
    • /
    • pp.107-114
    • /
    • 2020
  • This paper proposes a wearable audio book application using two wearable devices, a smartwatch and a hearables. We review requirements of what could be a killer wearable application and design our application based on these elicited requirements. To distinguish our application, we present 7 scenarios and introduce several wearable interaction modalities. To show feasibility of our approach, we design and implement our proof-of-concept prototype on Android emulator as well as on a commercial smartwatch. We thoroughly address how different interaction modalities are designed and implemented in the Android platform. Lastly, we show latency of the multi-modal and alternative interaction modalities that can be gracefully handled in wearable audio application use cases.