• 제목/요약/키워드: Wearable ECG

검색결과 77건 처리시간 0.033초

일상생활 중 건강모니터링을 위한 착용형 심전도계측 시스템 개발 (Development of the wearable ECG measurement system for health monitoring during daily life)

  • 노윤홍;정도운
    • 센서학회지
    • /
    • 제19권1호
    • /
    • pp.43-51
    • /
    • 2010
  • In this study, wearable ECG measurement system was implemented for health monitoring during daily life. A wearable belt-type ECG electrode worn around the chest by measuring the real-time ECG is produced in order to minimize the inconvenience in wearing. The measured ECG signal is transmitted via an ultra low power consumption wireless data communications unit to personal computer using Zigbee-compatible wireless sensor node. The ECG monitoring program is developed at end user which is personal computer. The measured ECG contains many noises mainly due to motion artifacts. For ECG signal processing, adaptive filtering process is proposed which can reduce motion artifacts efficiently and accurately than digital filter. The experimental results show that a reliable performance with high quality ECG signal can be achieved using this wearable ECG monitoring system.

Wearable Approach of ECG Monitoring System for Wireless Tele-Home Care Application

  • Kew, Hsein-Ping;Noh, Yun-Hong;Jeong, Do-Un
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2009년도 춘계학술대회
    • /
    • pp.337-340
    • /
    • 2009
  • Wireless tele-home-care application gives new possibilities for ECG (electrocardiogram) monitoring system with wearable biomedical sensors. Thus, continuously development of high convenient ECG monitoring system for high-risk cardiac patients is essential. This paper describes to monitor a person's ECG using wearable approach. A wearable belt-type ECG electrode with integrated electronics has been developed and has proven long-term robustness and monitoring of all electrical components. The measured ECG signal is transmitted via an ultra low power consumption wireless sensor node. ECG signals carry a lot clinical information for a cardiologist especially the R-peak detection in ECG. R-peak detection generally uses the threshold value which is fixed thus it bring errors due to motion artifacts and signal size changes. Variable threshold method is used to detect the R-peak which is more accurate and efficient. In order to evaluate the performance analysis, R-peak detection using MIT-BIH databases and Long Term Real-Time ECG is performed in this research. This concept able to allow patient to follow up critical patients from their home and early detecting rarely occurrences of cardiac arrhythmia.

  • PDF

무선센서네트워크 기반의 웨어러블 센서노드에서 3축 가속도 신호의 단채널 전송과 심전도 노이즈 제거에 대한 연구 (A Research for Removing ECG Noise and Transmitting 1-channel of 3-axis Accelerometer Signal in Wearable Sensor Node Based on WSN)

  • 이승철;정완영
    • 센서학회지
    • /
    • 제20권2호
    • /
    • pp.137-144
    • /
    • 2011
  • Wireless sensor network(WSN) has the potential to greatly effect many aspects of u-healthcare. By outfitting the potential with WSN, wearable sensor node can collects real-time data on physiological status and transmits through base station to server PC. However, there is a significant gap between WSN and healthcare. WSN has the limited resource about computing capability and data transmission according to bio-sensor sampling rates and channels to apply healthcare system. If a wearable node transmits ECG and accelerometer data of 4 channel sampled at 100 Hz, these data may occur high loss packets for transmitting human activity and ECG to server PC. Therefore current wearable sensor nodes have to solve above mentioned problems to be suited for u-healthcare system. Most WSN based activity and ECG monitoring system have been implemented some algorithms which are applied for signal vector magnitude(SVM) algorithm and ECG noise algorithm in server PC. In this paper, A wearable sensor node using integrated ECG and 3-axial accelerometer based on wireless sensor network is designed and developed. It can form multi-hop network with relay nodes to extend network range in WSN. Our wearable nodes can transmit 1-channel activity data processed activity classification data vector using SVM algorithm to 3-channel accelerometer data. ECG signals are contaminated with high frequency noise such as power line interference and muscle artifact. Our wearable sensor nodes can remove high frequency noise to clear original ECG signal for healthcare monitoring.

웨어러블 헬스케어 환경에서 ECG 전기패턴 QRS을 이용한 급성 심장마비 예방 시스템 (Design of Acute Heart Failure Prevention System based on QRS Pattern of ECG in Wearable Healthcare Environment)

  • 이주관;김만식;전문석
    • 한국전자통신학회논문지
    • /
    • 제11권11호
    • /
    • pp.1141-1148
    • /
    • 2016
  • 본 논문은 웨어러블 시스템을 이용하여, ECG 전기 패턴을 QRS을 이용하여 급성 심장마비 예측 감지 시스템으로, 웨어러블 심장 이상 징후 감지 스마트 워치와, 이를 포함 하고 디지털 ECG (X, Y) 패턴 좌표 DB를 이용하여 비정상 패턴을 즉시 감지하고, 급성 심장마비 예방 시스템 및 그 방법을 보여준다. 특히, 디지털 ECG(X, Y) 패턴 정보를 이용한 이상 징후 유형과 대비하는 단계를 통해서 급성 심장마비 발생 시, 골든타임을 놓치지 않고 응급 처치할 수 있음을 보여 준다.

Detection of Arrhythmias by Holter Monitoring and Use of Wearable Electrocardiography Devices Holter and wearable devices for arrhythmia detection

  • Ji Yeon Chang;Jae Kyung Kim
    • International Journal of Advanced Culture Technology
    • /
    • 제11권2호
    • /
    • pp.310-314
    • /
    • 2023
  • In this paper, we show that the limitations of Holter monitoring and Wearable Electrocardiogarphy Devices and their arrhythmia detection. Sudden death caused by cardiovascular disease, often referred to as the "silent killer" due to its unpredictable nature, is a major health concern. Electrocardiography (ECG) is a basic diagnostic tool for detecting heart disease, but its limitations make it difficult to detect arrhythmia, a significant indicator of an irregular heart state. To address this limitation, a long-term continuous ECG recording device has been developed, Holter ECG device and wearable device. A significant number of studies have focused on the differences between Holter monitoring and wearable devices. The Holter tests were useful for detecting regularly occurring arrhythmias, whereas wearable patches were better at detecting random and infrequent arrhythmias. Wearable patches were effective in detecting episodes of arrhythmia and myocardial ischemia. Despite the concern, wearable devices had less signal loss than Holter monitoring and patients also preferred wearable devices over Holter monitoring due to convenience. These results could mean that the wearable devices can perfectly replace the Holter test.

휴대용 심전도 모니터링 계측 시스템 개발에 관한 연구 (Development of an Ambulatory Wearable System for Continuous Patient Monitoring)

  • 박찬원;전찬민
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 학술회의 논문집 정보 및 제어부문 B
    • /
    • pp.920-923
    • /
    • 2003
  • An wearable electrocardiogram (ECG) monitoring system is a widely used non-invasive diagnostic tool for ambulatory patient who may be at risk from latent life-threatening cardiac abnormalities. In this paper, we have a portable ECG monitoring system with conductive fiber which was characterized by the small-size and the low power consumption. The system consists of conductive fibers, one-chip microcontroller, ECG preprocessing circuit, and monitoring software to be able to record and analyze in PC. ECG preprocessing circuit is made of pre-amplifier with gain of 10, band-pass filter with bandwidth of 0.5-120Hz and 2.5V offset circuit for A/D conversion. ECG signals obtained by sensor are included with corrupted noises such as a baseline wandering, 60 Hz power noise and interference noise by body movement. For cancellation corrupted noises in signals obtained by conductive fiber, we used the wavelet decomposition of wavelet transforms in MATLAB toolbox.

  • PDF

원격 건강 모니터링이 가능한 체스트 벨트형 심전도 측정 시스템 구현 (Implementation of the Chest-belt Type ECG monitoring System for Remote Health Monitoring)

  • 노윤홍;김세진;정완영;정도운
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2007년도 춘계종합학술대회
    • /
    • pp.667-670
    • /
    • 2007
  • 착용형 컴퓨팅을 응용한 건강모니터링 분야는 급격한 성장이 이루어지고 있다. 본 연구의 목적은 유비쿼터스 헬스케어를 위해 착용형 ECG모니터링 시스템을 구현하는 것이다. 본 논문에서는 구현된 프로토타입의 착용형 건강모니터링 시스템의 계측성능, 무선전송, 계측된 ECG신호의 분석 등에 대해 기술하고자 한다. 구현된 하드웨어 시스템은 지그비 통신을 이용하여 무선으로 체스트 벨트타입의 센서에서 PC서버로 전송한다. 그리고 구현된 시스템을 이용하여 ECG 모니터링 테스트를 수행한 결과 원격 모니터링의 가능성을 확인하였다.

  • PDF

착용형 심장활동 모니터링 시스템을 활용한 정신적 스트레스 평가 (The Assessment of Dynamic Mental Stress with Wearable Heart Activity Monitoring System)

  • 김경섭;신승원;이정환;최희정
    • 전기학회논문지
    • /
    • 제57권6호
    • /
    • pp.1109-1115
    • /
    • 2008
  • In the ubiquitous health monitoring environments, it is quite important not only to evaluate the physiological health condition but also mental stress condition. In order to achieve this goal, a heart activity monitoring system utilizing a wearable bipolar electrode is devised and the heart rate variability(HRV) is extracted and interpreted in both frequency and time feature domains. Consequently, to evaluate the emotional stress condition of the subjects, a stress-induced experimental protocol was applied to healthy subjects and the time and frequency features of heart activity were analyzed in terms of the ratio of low frequency components v.s., high frequency components and the relevant the moving average distributions compromising the successive RR peaks intervals in the ambulatory ECG measurement system.

수정된 바이폴라 전극을 갖는 착용형 심장활동 모니터링 시스템 구현 및 임상 심전도와의 상관관계 분석 (Implementation of Wearable Heart Activity Monitoring System having Modified Bipolar Electrode and Correlation Analysis with Clinical Electrocardiograph(ECG))

  • 이강휘;이정환;이영재;김경섭;양희경;신건수;이명호
    • 전기학회논문지
    • /
    • 제57권6호
    • /
    • pp.1102-1108
    • /
    • 2008
  • Wearable physiological signal monitoring systems are regarded as an important sensing unit platforms in ubiquitous/mobile healthcare application. In this paper, we suggested the modified bipolar electrodes implemented on the portable heart activity monitoring system, which minimized the distance of electrodes formed on a attachable pad. The proposed electrode configuration is useful in mobile measurement environments, but has a disadvantage of reduced amplitude of the heart action potential. In order to overcome the shortcoming of the suggested electrode configuration, we implemented the amplifying circuit to increase the signal-gain and decrease the artifacts. For evaluations, we analyzed the specificity of measured cardiography using the proposed electrodes through the comparing of heart activity monitoring system with standard clinical ECG(lead2) by pearson correlation coefficients. The result showed that the average correlation coefficient is $0.903{\pm}0.036,\;0.873{\pm}0.072$ at V3, V4 chest lead position, respectively. Thus, the modified bipolar electrode is quite suitable to monitor the electrical activity of the heart in the situation of the mobile environment, and could be considered having high similarity with standard clinical ECG.

Real Time Drowsiness Detection by a WSN based Wearable ECG Measurement System

  • Takalokastari, Tiina;Jung, Sang-Joong;Lee, Duk-Dong;Chung, Wan-Young
    • 센서학회지
    • /
    • 제20권6호
    • /
    • pp.382-387
    • /
    • 2011
  • Whether a person is feeling sleepy or reasonably awake is important safety information in many areas, such as humans operating in traffic or in heavy industry. The changes of body signals have been mostly researched by looking at electroencephalogram(EEG) signals but more and more other medical signals are being examined. In our study, an electrocardiogram(ECG) signal is measured at a sampling rate of 100 Hz and used to try to distinguish the possible differences in signal between the two states: awake and drowsy. Practical tests are conducted using a wireless sensor node connected to a wearable ECG sensor, and an ECG signal is transmitted wirelessly to a base station connected to a server PC. Through the QRS complex in the ECG analysis it is possible to obtain much information that is helpful for diagnosing different types of cardiovascular disease. A program is made with MATLAB for digital signal filtering and graphing as well as recognizing the parts of the QRS complex within the signal. Drowsiness detection is performed by evaluating the R peaks, R-R interval, interval between R and S peaks and the duration of the QRS complex..