• Title/Summary/Keyword: Wear stress

Search Result 421, Processing Time 0.031 seconds

Tribological Performance of A1203/Ni0r Coating

  • Chae, Young-Hun;Kim, Seock-Sam
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.7
    • /
    • pp.911-918
    • /
    • 2002
  • The tribological performance of A1$_2$O$_3$/NiCr coating deposited on steel (SH45C) was investigated under lubrication. The parameters of sliding wear consist of normal load and coating thickness. Test result showed that there was no evidence of an improved bonding strength in the coating. However, the wear resistance of the A1$_2$O$_3$/NiCr coaling was significantly greater than that of the Al$_2$O$_3$ coating. It was eviclent that the residual stress for the A1$_2$O$_3$coating was higher than that of the A1$_2$O$_3$/NiCr coating from the Scratch test failure of coating. The bond coating played an important role in decreasing the residual stress. Also, it was found that the residual stress had d notable influence on the wear mechanism.

Integrated Analysis for the Shrink-Fitted Die with Multi stress-Ring of Dissimilar Materials (열박음된 이종재 다중보강링을 갖는 금형의 통합해석)

  • Yoh, Eun-Gu;Lee, Yong-Shin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.3
    • /
    • pp.40-46
    • /
    • 2001
  • An integrated analysis for the thermo-elastic deformation, fatigue, wear and brittle damage evolution of the shrink-fitted die with multi stress-ring of dissimilar materials is presented. A simple numerical algorithm for the moving elastic boundaries characterizing the contacts of the insert and multi stress-rings is presented. The initial stress distribution in the die due to shrink-fit is considered and the traction at the die surface contacting with the work piece is obtained by analyzing the elasto-plastic deformation of work piece. Elastic analysis of the separate-type die is performed and then the evolution of brittle damage, wear and fatigue life are predicted. This integrated analysis is applied to the extrusion die with two layers of stress-rings and the results are discussed in detail.

  • PDF

Roll의 수명예측 model 개발

  • 배용환;장삼규;이석희
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1992.04a
    • /
    • pp.306-312
    • /
    • 1992
  • The prevention of roll breakage in hot rolling process is improtant to reduce maintenance cost and production loss. Rolling conditions such as the roll force and torque have been intensively studied to overcome the roll breakage. in the present work, a model for life prediction of work rolls under working condition was developed and discussed. The model consists of stress analysis, crack propagation, wear and fatigue calculation model. Roll life can be predicted by stress, crack depth and fatigue damage calculated from this model. The reliability of stress analysis is backed up by the FEM analysis. From the result of simulation using by pressent model, although the fatigue damage of back up roll reachs 80% of practical limit, that of workroll was less than 40%. In edge section of workroll stress amplification is found by wear and bender effect. We can judge that workroll failures are not due to fatigue damage, crack propagation by bending stress but stress amplification by wear and bender in present working condition.

Wear characteristics depended on Wear Index in Wheel-Rail Interface (차륜 답면과 레일의 경계영역에서의 마모 특성)

  • Ahn, Jong-Gon;Kwon, Seok-Jin;Son, Young-Jin;Kim, Ho-Kyung
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.560-567
    • /
    • 2011
  • Wheel and rail wear is a fundamental and complicate problem in railway field. The life of railway is usually limited by wear. The wheel surface is subjected to high normal and tangential contact stress. The removal of material from the surface by wear is function of the sliding and contact stress. In the present paper, the wear characteristic depended on slip rate, contact pressure and temperature are investigated and is used to twin disc tester. The result shows that the wear in wheel-rail interface is remarkably depended on slip rate and contact pressure.

  • PDF

Wear Characteristics Depended on Wear Index in Wheel-Rail Interface (차륜 답면과 레일의 경계영역에서의 마모 특성)

  • Kim, Moon-Ki;Ahn, Jong-Gon;Kim, Sung-Kwon;Kwon, Seok-Jin;Lee, Hi-Sung
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.1000-1007
    • /
    • 2011
  • Wheel and rail wear is a fundamental and complicate problem in railway field. The life of railway is usually limited by wear. The wheel surface is subjected to high normal and tangential contact stress. The removal of material from the surface by wear is function of the sliding and contact stress. In the present paper, the wear characteristic depended on slip rate, contact pressure and temperature are investigated and is used to twin disc tester. The result shows that the wear in wheel-rail interface is remarkably depended on slip rate and contact pressure.

  • PDF

Analysis on load-bearing contact characteristics of face gear tooth surface wear with installation errors

  • Fan Zhang;Xian-long Peng
    • Computers and Concrete
    • /
    • v.31 no.2
    • /
    • pp.163-171
    • /
    • 2023
  • Face gear transmission is widely used in aerospace shunt-confluence transmission system. Tooth wear is one of the main factors affecting its bearing transmission performance. Furthermore, the installation errors of face gear are inevitable. In order to study the wear mechanism of face gear tooth surface with installation errors, based on tooth contact analysis numerical method and Archard wear theory, the UMESHMOTION subroutine in ABAQUS is developed.Combining with Arbitrary Lagrangian-Eulerian adaptive mesh technology, the finite element mesh wear model of abraded face gear pair is established.The preprocessing conditions are set to generate the inp files.Then,the inp files for each corner are imported and batch processed in ABAQUS.The loading tooth contact problem at each rotation angle is solved and the load distribution coefficient among gear tooth, tooth root bending stress, tooth surface contact stress and loaded transmission error are obtained. Results show that the tooth root wear is the most serious and the wear at the pitch cone is close to 0.The wear law of tooth surface along tooth width direction is convex parabola and the wear law along tooth height direction is concave parabola.

Quantitative Evaluation of Wear Stress Due to Traffic in Zoysia japonica cv. 'Zenith' Using Non-Destructive RGB Imagery Analysis (비파괴적 RGB 이미지 분석을 활용한 들잔디 '제니스'에서의 답압으로 인한 마모 스트레스 정량적 분석)

  • Jae Gyeong Jung;Eun Seol Jeong;Eon Ju Jin;Jun Hyuck Yoon;Kwon Seok Jeon;Jin Joong Kim;Eun Ji Bae
    • Korean Journal of Environmental Agriculture
    • /
    • v.42 no.2
    • /
    • pp.121-130
    • /
    • 2023
  • The RGB (red, green, and blue) imagery analysis is an important remote sensing tool, which estimates the effect of environmental stress on turfgrass growth and physiology. Therefore, this study investigated the effect of continuous wear stress treatment on Zoysia japonica through RGB imagery analysis. The results of the growth measurement showed that the plant height substantially decreased, after nine hours of treatment with no considerable difference thereafter. Dry weight measurement showed a substantial difference in the morphological growth characteristics of the aerial part of the turfgrass, but none in the stolon and root zone. This could be attributed to the short period of compaction treatment. The ROS (reactive oxygen species) analysis showed that ROS rapidly increased due to wear stress treatment. The MDA content increased during the traffic process, whereas the green pixels increased and decreased repeatedly; however, overall, the trend declined but the overall trend decreased. Thus, this study confirmed that MDA was effective in reflecting the wear stress of turfgrass; however, it could through RGB image analysis.

The Analysis for Surface Hardening by Repeated Sliding Contact (반복 미끄럼 접촉에 의한 표면층의 경화에 대한 해석)

  • 박준목;김석삼
    • Tribology and Lubricants
    • /
    • v.13 no.4
    • /
    • pp.71-78
    • /
    • 1997
  • Wear is affected by numerous factors-contact load, sliding velocity and distance, friction coefficient, material properties and environmental conditions. Among these wear factors, surface hardness is one of very important factors to determine wear. But surface hardness is varied by work hardening during repeated sliding contact. In this reason wear rate is increased or decreased with varying surface hardness, and transition of wear mechanism is happened. In this study, the surface hardening by accumulating residual stress was analyzed by considering the repeated sliding Hertzian contact model. The results showed that surface hardness was increased with increasing contact load, friction coefficient and contact number. And the depth of hardening layer, plastic layer and elastic layer depended upon contact load and number, but they didn't depend upon friction coefficient. The predicted surface hardness was about 1.5-1.8 times as hard as the material.

Study on the Wear Characteristics of the High Strength Ductile Irons (고강도 구상흑연구철의 내마모성에 미치는 기지조직의 영향에 관한 연구)

  • Kim, Bog-Suk;Choi, Chang-Ock
    • Journal of Korea Foundry Society
    • /
    • v.9 no.3
    • /
    • pp.237-246
    • /
    • 1989
  • This study has been carried out to investigate the difference of rolling life and rolling wear characteristics for various high strength ductile iron castings under unlubricative dry rolling condition by Amsler type wear test with 9.09% sliding ratio. The tensile strength of the castings have been obtained 80, 90 and $100kg.f/mm^2$ as cast-state with pearlitic, bainitic and martensitic matrix structures alloyed with Mo, Cu and Ni. It has been found that the amount of rolling wear is decreased when the tensile strength and hardnees of the castings are increased. The amount of rolling wear is increased, when the maximum compressive stress are increased. The maximum weight loss ratio of rolling wear of the castings are same at the 70000 numbers of revolution with out the maximum compressive stress.

  • PDF

The Effect of Residual Stresses on Surface Failure and Wear (잔류응력의 표면파손과 마멸에 대한 영향)

  • Lee, Yeong-Je;Kim, Jin-Uk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.4
    • /
    • pp.677-682
    • /
    • 2002
  • Break-in is an intentional treatment to enhance the performance life of machinery parts and to maintain static friction behavior. Most studies on break-in have concerned only about surface conditions such as roughness or film formation. But the exact mechanism of break-in has not been found yet. Friction, scuffing behavior and wear of AISI 1045 were studied in relation to break-in and residual stress. The cylinder-on-disk type tribometer was used with the line-contact geometry. Scuffing tests were carried out using a constant load of 730N. In the break-in procedure the step load was applied from 100N to 200N. In this experiment, it was found that the break-in helps compressive residual stress to be formed well enough to enhance the scuffing life during the scuffing test. Specimens that had high compressive residual stress induced by shot-peening show better wear resistance than those were not shot-peened. Results of scuffing test, break-in procedure and wear amount in relation to residual stress have been discussed.