• 제목/요약/키워드: Wear resistance properties

검색결과 646건 처리시간 0.035초

무가압함침법으로 제조한 SiCp/AC8A 복합재료의 기계적 성질 (Mechanical Properties of SiCp/AC8A Composites Fabricated by Pressureless Metal Infiltration Process)

  • 김재동;고성위;김형진
    • Composites Research
    • /
    • 제15권3호
    • /
    • pp.1-10
    • /
    • 2002
  • 무가압함침법에 의해 제조된 SiCp/AC8A복합재료에 대하여 SiC 입자 크기와 부가적인 Mg의 첨가가 복합재료의 기계적 성질과 마모특성에 미치는 영향을 조사하였다. SiCp/AC8A복합재료의 경도와 굽힘강도는 입자의 크기가 작아짐에 따라 증가하였다. Mg 첨가량이 증가함에 따라 SiCP/AC8A복합재료의 경도는 경질의 반응생성물에 의해 상승하였으나 굽힘강도는 석출물의 조대화와 기공율의 증대에 의해 저하하였다. SiCp/AC8A복합재료는 AC8A 기지재에 비하여 고속의 마찰속도에서 6배의 내마모성을 나타냈으며 강화입자의 크기가 작아짐에 따라 내마모성은 향상되는 것으로 나타났다. 마모기구에 있어서 SiCp/AC8A복합재료는 마찰속도에 관계없이 연삭마모를 나타냈으나 AC8A 기지재는 마찰속도가 고속화됨에 따라 응착 및 용융마모의 마모면을 나타냈다.

PREPARATION OF AMORPHOUS CARBON NITRIDE FILMS AND DLC FILMS BY SHIELDED ARC ION PLATING AND THEIR TRIBOLOGICAL PROPERTIES

  • Takai, Osamu
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2000년도 추계학술발표회 초록집
    • /
    • pp.3-4
    • /
    • 2000
  • Many researchers are interested in the synthesis and characterization of carbon nitride and diamond-like carbon (DLq because they show excellent mechanical properties such as low friction and high wear resistance and excellent electrical properties such as controllable electical resistivity and good field electron emission. We have deposited amorphous carbon nitride (a-C:N) thin films and DLC thin films by shielded arc ion plating (SAIP) and evaluated the structural and tribological properties. The application of appropriate negative bias on substrates is effective to increase the film hardness and wear resistance. This paper reports on the deposition and tribological OLC films in relation to the substrate bias voltage (Vs). films are compared with those of the OLC films. A high purity sintered graphite target was mounted on a cathode as a carbon source. Nitrogen or argon was introduced into a deposition chamber through each mass flow controller. After the initiation of an arc plasma at 60 A and 1 Pa, the target surface was heated and evaporated by the plasma. Carbon atoms and clusters evaporated from the target were ionized partially and reacted with activated nitrogen species, and a carbon nitride film was deposited onto a Si (100) substrate when we used nitrogen as a reactant gas. The surface of the growing film also reacted with activated nitrogen species. Carbon macropartic1es (0.1 -100 maicro-m) evaporated from the target at the same time were not ionized and did not react fully with nitrogen species. These macroparticles interfered with the formation of the carbon nitride film. Therefore we set a shielding plate made of stainless steel between the target and the substrate to trap the macropartic1es. This shielding method is very effective to prepare smooth a-CN films. We, therefore, call this method "shielded arc ion plating (SAIP)". For the deposition of DLC films we used argon instead of nitrogen. Films of about 150 nm in thickness were deposited onto Si substrates. Their structures, chemical compositions and chemical bonding states were analyzed by using X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy and infrared spectroscopy. Hardness of the films was measured with a nanointender interfaced with an atomic force microscope (AFM). A Berkovich-type diamond tip whose radius was less than 100 nm was used for the measurement. A force-displacement curve of each film was measured at a peak load force of 250 maicro-N. Load, hold and unload times for each indentation were 2.5, 0 and 2.5 s, respectively. Hardness of each film was determined from five force-displacement curves. Wear resistance of the films was analyzed as follows. First, each film surface was scanned with the diamond tip at a constant load force of 20 maicro-N. The tip scanning was repeated 30 times in a 1 urn-square region with 512 lines at a scanning rate of 2 um/ s. After this tip-scanning, the film surface was observed in the AFM mode at a constant force of 5 maicro-N with the same Berkovich-type tip. The hardness of a-CN films was less dependent on Vs. The hardness of the film deposited at Vs=O V in a nitrogen plasma was about 10 GPa and almost similar to that of Si. It slightly increased to 12 - 15 GPa when a bias voltage of -100 - -500 V was applied to the substrate with showing its maximum at Vs=-300 V. The film deposited at Vs=O V was least wear resistant which was consistent with its lowest hardness. The biased films became more wear resistant. Particularly the film deposited at Vs=-300 V showed remarkable wear resistance. Its wear depth was too shallow to be measured with AFM. On the other hand, the DLC film, deposited at Vs=-l00 V in an argon plasma, whose hardness was 35 GPa was obviously worn under the same wear test conditions. The a-C:N films show higher wear resistance than DLC films and are useful for wear resistant coatings on various mechanical and electronic parts.nic parts.

  • PDF

Tribological Behavior of Multilayered WC-Ti1-xAlxN Coatings Deposited by Cathodic Arc Deposition Process on High Speed Steel

  • Kim, Jung Gu;Hwang, Woon Suk
    • Corrosion Science and Technology
    • /
    • 제5권2호
    • /
    • pp.52-61
    • /
    • 2006
  • Recently, much of the current development in surface modification engineering are focused on multilayered coatings. Multilayered coatings have the potential to improve the tribological properties. Four different multilayered coatings were deposited on AISI D2 steel. The prepared samples are designed as $WC-Ti_{0.6}Al_{0.4}N$, $WC-Ti_{0.53}Al_{0.47}N$, $WC-Ti_{0.5}Al_{0.5}N$ and $WC-Ti_{0.43}Al_{0.57}N$. The multilayered coatings were investigated with respect to coating surface and cross-sectional morphology, roughness, adhesion, hardness, porosity and tribological behavior. Especially, wear tests of four multilayered coatings were performed by using a ball-on-disc configuration with a linear sliding speed of 0.017 m/sec, 5.38 N load. The tests were carried out at room temperature in air by employing AISI 52100 steel ball ($H_R=66$) having a diameter of 10 mm. The surface morphology, and topography of the wear scars of samples and balls have been determined by using scanning electron spectroscopy (SEM). Results have showed an improved wear resistance of the $WC-Ti_{1-x}Al_xN$ coatings with increasing of Al concentration. $WC-Ti_{0.43}Al_{0.57}N$ coating with the lower surface roughness and porosity with good adhesion enhanced wear resistance.

이산 요소법을 이용한 골재 입자의 혼합 및 배출 시 골재 거동 및 강판 마모에 관한 연구 (Discrete Element Method for Defining the Dynamic Behavior and Abrasion of Gravel in Mixer Trucks during Mixing and Discharging)

  • 유승훈;우호길
    • 한국기계가공학회지
    • /
    • 제19권12호
    • /
    • pp.34-41
    • /
    • 2020
  • Ready-mixed concrete is unconsolidated concrete typically transported to construction sites by using mixer trucks. A proper rotation of concrete is necessary to prevent its solidification in mixer trucks during transport: in accordance with the manufacturing method and quality inspection prescribed in KSF4009, this movement is maintained after the manufacturing of concrete in professional production plants and the addition of water, solid materials, and admixtures. Unfortunately, mixer truck parts wear out over long periods of time. In order to improve the wear resistance of the main part of mixer trucks, we used a steel plate with good wear resistance or partially added a reinforcement plate. In this study, we first tested the properties of concrete (as required for the DEM), and then carried out mixing and discharge simulations to define the actual operating conditions of mixer trucks. For each condition, we calculated the amount and location of wear. The reliability of our results was finally verified by comparing them with the measurement values. Overall, this study provided basic data for an optimal design of mixer trucks: one that would reduce the vehicles' weight and production costs.

SiCp입자강화 Al 복합재료의 내열 및 마모특성 (Heat and Wear Resistance Characterization of SiCp Reinforced Al Matrix Composites)

  • 김석원;김완기;우기도;안행근
    • 한국주조공학회지
    • /
    • 제20권6호
    • /
    • pp.377-385
    • /
    • 2000
  • Al matrix composites as the most promising MMCs can be expected to be excellent engineering materials in the nearest future. So as to improve material properties of composite, many manufacturing processes have been developed. Among them, squeeze casting process which offers fine microstructure and near-net-shape is one of the most successful MMCs manufacturing processes. But, in case of with subsieve size particles (under 44 ${\mu}m$), it is very difficult to homogeneously distribute particles in matrix of Al matrix composite by various casting processes, including squeeze casting used so far. Duplex process which was developed in previous study was used to distribute the particle of subsieve size more homogeneously in matrix of Al matrix composite. Microstructures, wear and heat resistance characterization of Al-Si-Cu-Mg-(Ni)/SiCp manufactured by duplex process were examined to clarify the effect of manufacturing conditions, particle size of reinforcement and alloying elements. Al matrix composites reinforced with SiCp(10 ${\mu}m$) have the lowest wear amount among composites reinforced with 3 ${\mu}m$, 5 ${\mu}m$ and 10 ${\mu}m$ SiCp. The wear amount of Al matrix composites with 10 wt.% SiCp(3, 5, 10 ${\mu}m$) was decreased according to the increase of the sliding speed because abrasive wear takes place at high sliding speed of 4m/s and worn debris with block type occurs at low sliding speed of 1m/s. As for heat resistance, it is made clear that remarkable heat resistance property can be obtained by addition of Ni element in Al matrix composites.

  • PDF

플라즈마 침탄된 오스테나이트계 스데인리스강의 마모 및 부식 특성에 관한 연구 (A Study on Wear and Corrosion Properties of Plasma Carburized Austenitic Stainless Steel)

  • 신동명;이창렬;이경섭
    • 한국재료학회지
    • /
    • 제12권10호
    • /
    • pp.776-783
    • /
    • 2002
  • Austenitic stainless steel (STS304) has been carburized using glow discharge plasma and its microstructure, wear resistance and corrosion property have been investigated. A repeat boost-diffuse carburizing was used as an effective plasma carburizing method. The effective case depth of the plasma carburized specimens was increased with the carbon concentration at the surface area. The specimens prepared by 3 hours plasma carburizing under $600^{\circ}C$ did not have the standard hardness for the effective case depth, but the specimen prepared by 11 hours plasma carburizing at $500^{\circ}C$ had nearly the same hardness with the specimen plasma carburized for 3 hours at $800^{\circ}C$. The wear resistance increased with temperature but the corrosion properties of the specimens prepared over $600^{\circ}C$ decreased rapidly due to the grain boundary sensitization. However, the specimen plasma carburized for 11 hours at $500^{\circ}C$ had nearly the same wear resistance with the specimen plasma carburized for 3 hours at $800^{\circ}C$ without deterioration of corrosion property. This could be resulted from the fact that the microstructure of the specimen plasma carburized for 11 hours at $500^{\circ}C$ was composed of martensite and austenite, because a partial martensite transformation was occurred only in the specimen plasma carburized for 11 hours at 50$0^{\circ}C$.

RF Plasma법으로 증착된 TiCN박막의 구조 및 기계적 거동에 관한 연구 (Structure & Mechanical Behavior of TiCN Thin Films by rf Plasma Deposition)

  • 백창현;박상렬;홍주화;위명용;강희재
    • 열처리공학회지
    • /
    • 제13권2호
    • /
    • pp.91-97
    • /
    • 2000
  • The structure and mechanical properties of TiN and TiCN thin films deposited on STD61 steel substrates by the RF-sputtering methods has been studied by using XPS, XRD, micro-hardness tester, scratch tester, and wear-resistance tester. XPS results showed that the TiCN thin film formed with chemical bonding state. The TiN thin films grew with (111) orientation having the lowest strain energy by compressive stress, whereas the TiCN thin films grew with both (111) and (200) orientation, but (200) orientation having the lowest surface energy becomes dominant as carbon contents increase. The pre-etching treatment of substrate did not affect on the preferred orientation of thin films, but it played an important role in improving mechanical properties of thin films such as the hardness, adhesion and wear- resistance. Especially, the TiCN thin films showed the superior wear resistances due to high hardness and low friction coefficient compared with TiN thin films.

  • PDF

트리에탄올아민을 착화제로 사용한 무전해 니켈도금욕에서의 석출물의 조성 및 기계적 성질 (Composition and Mechanical Properties of Nickel Deposit Obtained from Electroless Nickel Plating Bath Contained Triethanolamine as Complexing Agent)

  • 여운관;문인형
    • 한국표면공학회지
    • /
    • 제19권2호
    • /
    • pp.31-43
    • /
    • 1986
  • The properties of the electroless nickel deposit mainly depends on the pH of the bath, the plating temperature, and the molar ratio of nickel to hypophosphite but they are also affected by its formulation and concentration of complexing and buffering agents. According to changeing the concentration of triethanolamine and boric acid, phosphorous contents, microsturcture, crystalline, hardness and wear resistance of deposits obtained from ammoniacal alkaline bath were investigated by EPMA, differential thermal analyser, X-ray diffractometer and wear tester. The results are as follows; (1) Increasing concentration of triethanolamine in the bath, the deposits is slightly inclined to increase its phosphorous content(3.7% P). (2) In the as-plated state, the deposits are not crystallized state but they are thermally unstable phase, and they are crystallized with precipitating $Ni_3P$ at 400$^{\circ}C$. (3) The deposit containing 2.3% P has higher hardness value in the as plated and heat treated state at below 300$^{\circ}C$ than those of 3.7% phosphorous deposit (1090Hk). But in the case of heat treating at 400$^{\circ}C$, the former has lower hardness value (1000Hk) than the latter and has remarkably Ni(III) orientation by heat treatment. (4) The 3.7% phosphorous deposit heat treated at 400$^{\circ}C$ has better wear resistance than hard chromium plating.

  • PDF

Tribological Behavior of Whiteware with Different Transparent Glazes

  • Heo, Sujeong;Kim, Soomin;Kim, Ungsoo;Pee, Jaehwan;Han, Yoonsoo;Kim, Seongwon;Lee, Sungmin;Kim, Hyungtae;Oh, Yoonsuk
    • 한국세라믹학회지
    • /
    • 제52권3호
    • /
    • pp.186-191
    • /
    • 2015
  • Tribological properties of whiteware with various transparent glazes, which have different composition and microstructure, were investigated. The wear resistance and friction behavior of the glazed whiteware are a very important aspect if the whiteware is used as tableware and for sanitation purposes. Generally, the wear property is influenced by the microstructure and surface morphology of the material. The whiteware specimens with two kinds of transparent glazes were fabricated by using the commercially available porcelain body. Furthermore, the commercial tableware, such as bone china, and traditional tableware were also examined as reference materials. All of the specimens showed that different pore structures might affect the mechanical and tribological properties. It seems that the wear resistance of whiteware is substantially related to the pore size and distribution of glaze rather than the hardness value of the specimen.

습윤 접지력 향상을 위한 안전화 겉창 개발 연구 (The Development of Outsole for Wet Traction Enhancement)

  • 김정수
    • 한국안전학회지
    • /
    • 제28권3호
    • /
    • pp.33-38
    • /
    • 2013
  • Many occupational workers or professionals have to walk on the various floors for a long period of time. The objective of this study was to develop the safety shoes with increased traction through the material selection. In order to fulfill our objective, first, two kinds of filler were selected to compare the wear mechanism at outsole surface. The developed rubber materials were tested with two kinds of portable slip meters. The sample safety shoes with developed rubber materials were also tested with subject in the laboratory. During walking, the safety shoes were naturally abraded with counter surface. The coefficient of friction(COF) was gradually decreased with number of steps to 30,000, while the COF was abruptly increased from 30,000 to 40,000. The experimental results showed that COF tested with silica rubber was at least 10% higher than that with carbon black rubber in wet or detergent condition. It has been well recognized that filler properties play a important role in wet traction in the tire industry. However it has been unclear that filler properties would be decisive factor in safety shoes. Our study shows that silica exhibits a higher slip resistance than carbon black without reference to wear states in wet or detergent condition. So, this results will provide guides for outsole compounders to develop new products and improve product performance.