• Title/Summary/Keyword: Wear resistance performance

Search Result 189, Processing Time 0.026 seconds

Crack Growth and Wear Properties of Silica-reinforced Styrene-butadiene Rubber Compounds: Effect of Processing Oil Type (실리카충전 스티렌-부타디엔 고무컴파운드의 균열성장 및 마모특성: 공정오일 종류의 영향)

  • Kang, S.L.;Lee, J.Y.;Go, J.Y.;Go, Y.H.;Kaang, S.;Nah, C.
    • Elastomers and Composites
    • /
    • v.44 no.4
    • /
    • pp.401-407
    • /
    • 2009
  • Commercial grades of solution styrene-butadiene rubbers extended with high aromatic oils having high polycyclic aromatic compounds (PCA) and low PCA oils were used to study the effect of the processing oil particularly on the crack propagation resistance and frictional wear resistance of the vulcanizates. The aromatic oil based vulcanizates exhibited superior fracture behavior over the low PCA oil extended vulcanizates based on tensile and trouser tear tests. Compounds with aromatic oil showed superior crack propagation resistance compared with those containing low PCA oil, especially at the lower ranges of tearing energy. In terms of frictional wear resistance, the aromatic oil extended compounds showed superior performance particularly in the lower frictional work ($W_f$) range but in the higher $W_f$ range the low PCA oil extended vulcanizates performed better.

Sliding Wear Characteristics of plasma Sprayed $8\%Y_{2}O_3-ZrO_2$ Coating for Post-spray Heat Treatment

  • Chae Young-Hun;Kim Seock-Sam
    • KSTLE International Journal
    • /
    • v.6 no.2
    • /
    • pp.45-50
    • /
    • 2005
  • Plasma ceramic spray that is applied on a machine part under severe work conditions has been investigated for tribological behavior. The application of ceramic coatings by plasma spray has become essential in tribosystems to produce wear resistance and long life in severe conditions. The purpose of this study was to investigate the wear characteristics of $8\%Y_{2}O_3-ZrO_2$ coating, in view of the effect of post-spay heat treatment. The plasma-sprayed $8\%Y_{2}O_3-ZrO_2$ coating was studied to know the relationship between phase transformations and wear behavior related to post-spray heat treatment. Wear test was carried out with ball on disk type on normal loads of 50N,70N and 90N under room temperature. The phase transformation of phase and the value of residual stress were measured by X-ray diffraction method(XRD). Tribological characteristics and wear mechanisms of coatings were observed by SEM. The tribological wear performance was discussed in the focusing of residual stress. Consequently, post-spray heat treatment plays an important role in decreasing residual stress. Residual stress in the coating system has a significant influence on the wear mechanism of coating.

Performance Evaluation of Ti-Al-N coated Endmill by Arc ton Plating (아크이온플레이팅에 의한 Ti-Al-N코팅 엔드밀의 성능평가)

  • 이상용;강명창;김정석;김광호
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.251-254
    • /
    • 2002
  • The technique of high speed machining is widely studied in machining field. In this study, TiAIN single-layered and TiAIN/TiN double-layered coatings were applied to end-mill by an arc ion plating technique. Their performances were comparatively studied about cutting force, tool wear, tool life and surface roughness of workpiece under high speed cutting conditions. The TiAIN single-layer coated tool showed higher wear-resistance due to its higher hardness, while the TiAIN/TiN double-layer coated tool showed better performance for high metal removal, i.e., high fled per tooth condition due to its higher toughness. The surface roughness of the workpiece was not influenced by the wear amount of coated tools.

  • PDF

Powder Metallurgical Tool Steel Solutions for Powder Pressing and Other High-performance Cold Work Applications

  • Schemmel, Ingrid;Marsoner, Stefan;Makovec, Heinz
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.841-843
    • /
    • 2006
  • In high-performance cold work applications, tool failure depends on the predominating loading conditions. Typical failure mechanisms are a combination of abrasive wear, adhesive wear, plastic deformation, cracking and edge crumbling. In this paper we demonstrate how the microstructure of tool steels can be positively influenced by modifying the alloying system and the production route to meet the demands of the different loading situations which occur during operation. The investigation was focused on ductility, fatigue strength and wear resistance. Theoretical considerations were confirmed by practical tests.

  • PDF

Friction and Wear Properties of Improved Polyurethane Based Magneto-Rheological Elastomer (향상된 폴리우레탄 기반 자기유변탄성체의 마찰 마모 특성연구)

  • Lian, Chenglong;Hong, Sung-Geun;Lee, Kwang-Hee;Lee, Chul-Hee;Kim, Cheol-Hyun
    • Tribology and Lubricants
    • /
    • v.28 no.6
    • /
    • pp.333-339
    • /
    • 2012
  • Typical magneto-rheological (MR) elastomers consist of silicon-based material. A number of studies have been carried out to evaluate the vibration and tribological characteristics of silicon-based MR e-lastomers. However, these elastomers have quite low strength, so they have low wear resistance. In this study, polyurethane-based MR elastomers with performances better than those of MR elastomers. Experiments have been conducted on different MR elastomers (Pu MR elastomer, Pu-Si MR elastomer, and Pu-wrapped-Si MR elastomer) and different predefined magnetic directions (Non-Direction, Vertical Direction, and Horizontal Directionality) to evaluate the friction and wear performance under a magnetic field. The results show that Pu-wrapped-Si MR elastomer with a horizontal predefined magnetic field has the best performance in terms of wear.

Experimental Study on Wear Characteristics of Metallic Materials used in Oil Sands Plants (오일샌드 플랜트용 금속소재의 마모 특성에 대한 실험적 연구)

  • Won, Sung-Jae;Cho, Seung-Hyun;Kang, Dae-Kyung;Heo, Joong-Sik
    • Tribology and Lubricants
    • /
    • v.33 no.1
    • /
    • pp.31-35
    • /
    • 2017
  • Recently, international attention has been focused on the development of non-traditional energy resources such as shale gas and oil sands, due to the steep increase in the demand for natural resources. The materials incorporated in an oil gas plant module experience extreme environments, and are prone to various problem such as fracture, corrosion and abrasion due to low-temperature brittleness. In order to improve the plant life, it is necessary to perform characteristics study and performance evaluation of the materials. In particular, this paper explains the main set of materials which are most frequently used in oil sands plant project. In order to investigate wear characteristics, the authors carried out abrasive wear tests of TP 316, stainless steel and SS 400, structural rolled steel. For the analysis of the abrasive wear resistance of an oil sands plant, the authors carried out the test according to ASTM G 105 "Standard Test Method for Conducting Wet Sand/Rubber Wheel Abrasion Test" standard guidelines. The authors have derived the results from the data associated with the loss of mass with respect to wear rate. During the test, for a given wear length for 10,000 revolutions, the rotational speed and applied force of the rubber wheel were varied.

A Study on Valve and Seat Insert Wearing depending on Cycle Number (사이클 수에 따른 밸브 및 시트 인서트의 마모연구)

  • Kim J.H.;Chun K.J.;Hong J.S.;Kim Y.S.;Kim D.Y.;Im J.K.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.103-104
    • /
    • 2006
  • Wear of valve seating face and seat insert seating face influence the performance of engine, so they are important. To manufacture good quality valve and seat insert which have wear resistance the relations between wear factors and wear of the two seating faces have to be inspected. Cycle number is one of the important wear factors wearing the two seating faces and it can translate into mileage in rear car. But little is blown. Test variable is only cycle number and the cycle numbers are $2.0{\times}10^6,\;4.0{\times}10^6\;6.0{\times}10^6,\;8.0{\times}10^6$. And the other test conditions were fixed. Rmax of valve seating face and seat insert seating face increase linearly as cycle number is increased. Rmax of valve seating face were smaller than seat insert seating face in each cycle number. Reaction production by tribological reaction and sliding wear was found on the two faces.

  • PDF

Wear of Diamond Dental Burs (치과의술용 다이아몬드 전착공구의 마멸)

  • Lee, Keun-Sang;Lim, Young-Ho;Kwon, Dong-Ho;So, Eui-Yeorl
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.4 s.97
    • /
    • pp.148-154
    • /
    • 1999
  • This study was carried out to verify grinding performance of dental diamond bur and investigate the possibility of AE application in dentistry field. Workpieces were made of acryl and bovine respectively for the experiments in this study. Grinding test was conducted to get the data of grinding resistance and specific grinding energy of four different types of diamond bur by using tool dynamometer. AE signal was acquired to verify grinding process in the AE measuring system. Tool wear was observed to find parameters about grinding characteristics of diamond bur by means of SEM picture. It was found that the wear of dental diamond bur could be detected with polishing of grinding material, removal of adhesive parts, wear of particles neighboring cutting nose, loss of material and elevation of temperature. The wear of B, C, D type diamond bur is due to wear and fracture of grain size. Abnormal state can be found through the behavior of AE signal in the grinding working. As a result, it is expected that forecast of abnormal state is possible using AE equipments under real time process.

  • PDF

Performance Analysis of Friction Pendulum System using PVDF/MgO Friction Material (PVDF/MgO 마찰재를 이용한 마찰면진장치의 성능 분석)

  • Kim, Sung-Jo;Kim, Ji-Su;Han, Tong-Seok
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.34 no.4
    • /
    • pp.213-219
    • /
    • 2021
  • Polytetrafluoroethylene (PTFE) is a commercialized friction material in friction pendulum systems used for earthquake hazard mitigation in structures, and it has excellent chemical resistance and frictional performance. However, PTFE has a relatively low wear resistance for the friction pendulum systems in service. As an alternative to PTFE, a cost-effective frictional material, polyvinylidene fluoride (PVDF) strengthened by magnesium oxide (MgO), with enhanced wear resistance performance is proposed in this study. The frictional performance of the developed PVDF/MgO was evaluated through experiments and compared with that of PTFE. Accordingly, a friction pendulum system was designed using the measured friction coefficient. The performance of this friction pendulum system was evaluated via nonlinear time history analyses of bridges. Subsequently, the plausibility of using PVDF/MgO as an alternative to PTFE as a friction material for friction pendulum systems was discussed.

Evaluation for Grinding Performance of Ceramics (세라믹 재료의 연삭성능 평가)

  • 정을섭;김성청;김태봉;소의열;이근상
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.10a
    • /
    • pp.355-359
    • /
    • 2001
  • In this study, experiments were carried out to investigate the characteristics of grinding and wear process of diamond wheel grinding ceramic materials. Normal component of grinding resistance of $AI_2O_3$ was less then that of $Si_3N_4$ and $ZrO_2$. It is because the resistance for grain shedding is less then that for layer formation. For the case of $Si_3N_4$ and $ZrO_2$, as the grain mesh number of wheel increases, the surface roughness decreases. For the case of $AI_2O_3$, the surface roughness does not decreases. For the case of $Si_3N_4$ and $ZrO_2$, grinding is carried out by abrasive wear processes. For the case of $AI_2O_3$, grinding is carried out by grain shedding process.

  • PDF