• Title/Summary/Keyword: Wear properties

Search Result 1,337, Processing Time 0.023 seconds

Biotribological Properties of TZP/Al2O3 Ceramics for Biomechanical Applications

  • Lee, Deuk-Yong;Lee, Se-Jong;Jang, Ju-Woong;Kim, Hak-Kwan;Kim, Dae-Joon
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.6
    • /
    • pp.525-529
    • /
    • 2003
  • Biotribological properties, such as wear rate and friction coefficient, of 3Y-TZP and Low Temperature Degradation (LTD) free materials were investigated via a ball(SiC)-on-plate sliding wear test to evaluate the relationship between wear mechanism and phase transformation. Wear test was conducted with a sliding speed of 0.035 m/s at room temperature and at 25$0^{\circ}C$ in air under a normal load of 49 N, respectively. Although friction coefficient of 3Y-TZP was the lowest due to the fine grain size, the highest wear loss and rate were observed due to the debris of monoclinic grains introduced during sliding and their values increased drastically with raising temperature. However, the biotribological properties of LTD-free materials were insensitive to temperature due to the inertness of the phase transformation, suggesting that they may be applicable to the biomechanical parts.

Tribological Properties of Carbon black added Acrylonitrile-butadiene Rubber

  • Cho, Kyung-Hoon;Lee, Yang-Bok;Lim, Dae-Soon
    • Korean Journal of Materials Research
    • /
    • v.17 no.11
    • /
    • pp.601-605
    • /
    • 2007
  • The tribological properties of acrylonitrile-butadiene rubber (NBR) filled with two kinds of carbon black filler were examined. Different types of Semi-Reinforcing Furnace (SRF), and High Abrasion Furnace (HAF) blacks were used as filler material to test the influence of carbon black particle size on the friction and wear of NBR. Results from tribological tests using a ball on disk method showed that the smaller HAF particles were more effective for reducing the wear of NBR during frictional sliding. The hardness, elastic modulus at 100% elongation, and elongation at break were measured to examine the correlation between the effects of carbon black on the mechanical and tribological properties of the NBR specimens. The wear tracks of the NBR specimens were observed with scanning electron microscopy (SEM). The wear tracks for NBR with different ratios of SRF and HAF showed clearly different abrasion patterns. Mechanisms for the friction and wear behavior of NBR with different sizes of carbon black filler were proposed using evidence from wear track observation, as well as the mechanical and tribological test results.

Mechanical Properties and Garment Formability on Breathable Fabrics for Sports-wear Garment (스포츠 의류용 투습직물의 역학특성과 의류형성성능 특성)

  • Kim, Hyun Ah
    • Fashion & Textile Research Journal
    • /
    • v.19 no.5
    • /
    • pp.626-634
    • /
    • 2017
  • This study investigated garment formability of the 73 breathable fabrics for sports-wear garment and their fabric mechanical properties were measured using KES-FB and FAST systems. Predicted garment formability from the mechanical properties measured using KES-FB and FAST systems was compared and discussed with fabric structural parameters. In addition, virtual 3D simulation silhouette by I-designer CAD system wear appearance by simulation using 3D CAD system. And compared with FAST finger chart by mechanical properties of FAST system. The correlation coefficients of extensibility and shear modulus between KES-FB and FAST systems were high, however, bending rigidity and compressibility showed relatively low correlation coefficients. The correlation coefficient of garment formability of breathable fabrics between KES-FB and FAST systems was 0.82. It revealed that garment formability can be predicted from fabric mechanical properties by KES-FB and FAST systems. The garment formability of nylon breathable fabric was higher than that of PET one, and the garment formability of laminated breathable fabric showed the highest value compared to coated, dot and hot melt laminated breathable fabrics. It revealed that garment formability of breathable fabrics for sports-wear can be predicted from fabric mechanical properties and garment formability was dependent on the materials, finishing method and fabric structural parameters.

A Study on the Improvement of Frictional Properties of Nylon Impregnated with Wax and Oil or Graphite (왁스와 오일 또는 흑연의 함침에 의한 나일론의 마찰특성 향상에 관한 연구)

  • 강석춘;정대원
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.6
    • /
    • pp.142-149
    • /
    • 2002
  • The frictional properties of nylon can be improved by the impregnation of lubricants like wax, oil or graphite. The inclusion of these lubricants, on the other hand, decreases the mechanical properties of nylon, such as tensile strength, hardness and impact strength. As an attempt to maximize frictional properties, while minimizing a decrease in the mechanical properties, various kinds of nylon containing 3 wt% wax and varying contents of oil or graphite were prepared. It was found that the synergy effects to improve both friction and anti-wear properties is evidenced by impregnating a combination of wax/oil or wax/graphite. The wear rate of a nylon containing 3 wt% of wax and 1.5 wt% of oil turned out to be 1/4 of that of nylon impregnated with 8 wt% wax or 8 wt% oil. The latter showed the lowest wear rate among the nylons prepared with a single lubricant. In addition, the friction coefficient of the developed nylon was found to be very similar to the nylon with 8 wt% wax only.

Effects of Additives on the Friction and Wear Properties of PTFE Composites (PTFE 복합재료의 마찰 . 마모 특성에 미치는 첨가제의 영향)

  • 김용직;엄수현;김윤해
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 1999.11a
    • /
    • pp.88-94
    • /
    • 1999
  • Recently, PTFE-polyimide composites are being used self-lubricating parts for industrial field. Thus, this study is mainly concerned with friction and wear properties for the piston ring of non-lubricating air compressor which made of PTFE-polyimide composites. The friction and wear test was carried out for the different composition ratio under the atmosphere room temperature and constant load of 7.69N and their friction and wear properties were compared with each other at various sliding speed. Notable results are summarized as follows. PTFE 100% showed that friction coefficient was almost same values at 0.94 and 1.88m/s but the value was decreased at 2.83m/s because the friction temperature is higher than low speed. PTFE 80%-PI 20% showed the lowest mean friction coefficient at 2.83m/s. PTFE 20%-PI 80% showed the highest friction coefficient at 0.94m/s and the value was decreased at high speed but the value is higher than other materials except PTFE 100 %. PI 100% showed the highest friction coefficient at 0.94 and 1.88m/s because adhesive wear mainly occurred that speed. PTFE 100% showed highest specific wear rate on the whole. Specific wear rate of PTFE 80%-PI 20% was almost the same value with PTFE 20%-PI 80%. PI 100% showed the lowest value at high sliding speed because the friction surface was thicken and carbonated by high friction temperature.

  • PDF

Nanomechanical properties and wear resistance of dental restorative materials

  • Karimzadeh, A.;Ayatollahi, Majid R.;Nikkhooyifar, M.;Bushroa, A.R.
    • Structural Engineering and Mechanics
    • /
    • v.64 no.6
    • /
    • pp.819-826
    • /
    • 2017
  • The effects of thermocycling procedure and material shade on the mechanical properties and wear resistance of resin-based dental restorative materials are investigated. The modulus of elasticity, hardness, plasticity index and wear resistance are determined for the conventional composite, the nanohybrid composite and the nanofilled dental composites. Disc-shape samples are prepared from each material to investigate the effects of thermocycling procedure on the mechanical properties and wear resistance of different types of dental restorative materials. In this respect, a group of samples is thermocycled and the other group is stored in ambient conditions. Then nano-indentation and nano-scratch tests are performed on the samples to measure their mechanical properties and wear resistance. Results show that the A1E shade of the dental nanocomposite possesses higher modulus of elasticity and hardness values compared to the two other shades. According to the experimental results, the mean values for the modulus of elasticity and hardness of the A1E shade of the nanocomposite are 13.71 GPa and 1.08 GPa, respectively. The modulus of elasticity and hardness of the conventional dental composite increase around 30 percent in the oral environment due to the moisture and temperature changes. The wear resistance of the dental composites is also significantly affected by moisture and temperature changes in the oral conditions. It is observed that thermocycling has no significant effect on the hardness, plasticity index and wear resistance of the nanohybrid composite and the nanocomposite dental materials.

Anti-wear Properties of Thiadiazole and Dithiocarbamate Derivatives (Thiadiazole과 Dithiocarbamate 유도체의 내마모 특성)

  • Kim, Sung-Ki;Hoang, Quoc-Viet;Lee, Ju-Yeon;Kim, Yeong-Joon;Chung, Keun-Woo;Kim, Young-Wun
    • Applied Chemistry for Engineering
    • /
    • v.27 no.5
    • /
    • pp.521-526
    • /
    • 2016
  • Some thiadiazole and dithiocarbamate derivatives were desinged and synthesized in order to study the potential use as anti- wear additives. Their anti-wear properties in three different base oils (DB-51, soybean, and 100 N) were evaluated using a four-ball wear tester (ASTM D4172). The solubilities of dithiocarbamate derivatives in the base oils were better than those of thiadiazole derivatives. The compounds containing oleoyl group rather than nonanoyl group gave good anti-wear properties. The solubilities and anti-wear properties were explained by the polarity of the compounds.

FRICTION AND WEAR PROPERTIES OF MICRO TEXTURED SURFACES IN BOUNDARY LUBRICATED SLIDING

  • Pettersson, U.;Jacobson, S.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.207-208
    • /
    • 2002
  • In the present study, the friction and wear properties of boundary lubricated textured surfaces were investigated. The capability of textured surfaces to feed lubricant into the interface of a sliding contact and to isolate wear partices was studied and related to the properties of the textured surfaces. Well-defined surface textures were produced by lithography and anisotropic etching of silicon wafers. Different widths and distributions of parallel groves were manufactured and subsequently the wafers were PVD coated with thin wear resistant TiN or DLC coatings, retaining the substrate texture. The surfaces were evaluated in reciprocating sliding against a ball bearing steel ball under starved or boundary lubricated conditions.

  • PDF

The Effect of Hydrogen on the Tribological Properties of Hydrogenated Amorphous Carbon Films

  • Shin, Jong-Han;Lim, Dae-Soon
    • The Korean Journal of Ceramics
    • /
    • v.3 no.2
    • /
    • pp.96-100
    • /
    • 1997
  • Hydrogenated amorphous carbon films were deposited on silicon substrates by using an RF PECVD. The hydrogen/methane ratio was varied from 50% to 88% to study the effect of hytdrogen in the film on the tribological properties. The friction and wear behaviors of the deposited films were investigated by ball-on-disk type wear tester. FT-IR spectra were used to characterize the structure of the films. Tribological properties of carbon films were correlated with their structure such as ratio of "polymer-like" stretching type and that of sp2 bonding. The result showed that the annealing caused a decrease in the amount of wear of contacted $Si_3N_4$ balls and a increase in the coefficient of friction. Possible explanation for annealing effect was discussed by the hydrogen desorption.esorption.

  • PDF

Mechanical Properties and Fatigue Characteristics of CrN Coated Ti-6Al-4V alloy (CrN 박막처리된 Ti-6Al-4V 합금의 기계적 성질과 피로특성)

  • Park, Yong-Gwon;Baeg, Chang-Hyung;Wey, Myeong-Yong
    • Korean Journal of Materials Research
    • /
    • v.12 no.8
    • /
    • pp.669-675
    • /
    • 2002
  • CrN film coated by AIP method, improved the mechanical properties (Hardness, Roughness, wear and fatigue) of Ti-6Al-4V alloy. The properties were studied using GXRD, XPS, Hardness, Roughness, wear and fatigue testers. CrN thin film thickness was about 7.5$\mu\textrm{m}$ and grew with (111) orientation. Hardness of CrN thin film was very high (Hv 1390) and roughness of the surface layer was greatly improved (Ra=0.063$\mu\textrm{m}$) compared with matrix alloy (Ra=0.321$\mu\textrm{m}$). Such changes of hardness and roughness could be contributed to improving the wear resistance and fatigue life. Striation like pattern with dimples and voids, a typical fatigue fracture mode, was observed throughout the specimen.