Browse > Article
http://dx.doi.org/10.12989/sem.2017.64.6.819

Nanomechanical properties and wear resistance of dental restorative materials  

Karimzadeh, A. (Fatigue and Fracture Laboratory, Center of Excellence in Experimental Solid Mechanics and Dynamics, School of Mechanical Engineering, Iran University of Science and Technology)
Ayatollahi, Majid R. (Fatigue and Fracture Laboratory, Center of Excellence in Experimental Solid Mechanics and Dynamics, School of Mechanical Engineering, Iran University of Science and Technology)
Nikkhooyifar, M. (Fatigue and Fracture Laboratory, Center of Excellence in Experimental Solid Mechanics and Dynamics, School of Mechanical Engineering, Iran University of Science and Technology)
Bushroa, A.R. (Department of Mechanical Engineering, Faculty of Engineering, University of Malaya)
Publication Information
Structural Engineering and Mechanics / v.64, no.6, 2017 , pp. 819-826 More about this Journal
Abstract
The effects of thermocycling procedure and material shade on the mechanical properties and wear resistance of resin-based dental restorative materials are investigated. The modulus of elasticity, hardness, plasticity index and wear resistance are determined for the conventional composite, the nanohybrid composite and the nanofilled dental composites. Disc-shape samples are prepared from each material to investigate the effects of thermocycling procedure on the mechanical properties and wear resistance of different types of dental restorative materials. In this respect, a group of samples is thermocycled and the other group is stored in ambient conditions. Then nano-indentation and nano-scratch tests are performed on the samples to measure their mechanical properties and wear resistance. Results show that the A1E shade of the dental nanocomposite possesses higher modulus of elasticity and hardness values compared to the two other shades. According to the experimental results, the mean values for the modulus of elasticity and hardness of the A1E shade of the nanocomposite are 13.71 GPa and 1.08 GPa, respectively. The modulus of elasticity and hardness of the conventional dental composite increase around 30 percent in the oral environment due to the moisture and temperature changes. The wear resistance of the dental composites is also significantly affected by moisture and temperature changes in the oral conditions. It is observed that thermocycling has no significant effect on the hardness, plasticity index and wear resistance of the nanohybrid composite and the nanocomposite dental materials.
Keywords
dental restorative polymers; nano-indentation experiment; nano-scratch experiment; surface analysis; thermocycling effect;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Carsi, M., Sanchis, M.J., Diaz-Calleja, R., Riande, E. and Nugent, M.J.D. (2013), "Effect of slight crosslinking on the mechanical relaxation behavior of poly(2-ethoxyethyl methacrylate) chains", Eur. Polym. J., 49(6), 1495-1502.   DOI
2 Choi, B., Lee, S.W. and Eom, K. (2016), "Nanomechanical behaviors and properties of amyloid fibrils", Multisc. Multiphys. Mech., 1(1), 53-64.   DOI
3 Chung, S., Yap, A., Tsai, K. and Yap, F. (2005), "Elastic modulus of resin-based dental restorative materials: a microindentation approach", J. Biomed. Mater. Res. B, 72, 246-253.
4 Chung, S.M., Yap, A.U.J., Koh, W.K., Tsai, K.T. and Lim, C.T. (2004), "Measurement of Poisson's ratio of dental composite restorative materials", Biomater., 25(13), 2455-2460.   DOI
5 Demarco, F.F., Correa, M.B., Cenci, M.S., Moraes, R.R. and Opdam, N.J.M. (2012), "Longevity of posterior composite restorations: not only a matter of materials", Dent. Mater., 28, 87-101.   DOI
6 Eftekhari, M. and Fatemi, A. (2016), "Tensile behavior of thermoplastic composites including temperature, moisture, and hygrothermal effects", Polym. Test., 51, 151-164.   DOI
7 Ferracane, J.L. (2011), "Resin composite-state of the art", Dent. Mater., 27(1), 29-38.   DOI
8 Fu, J., Liu, W., Hao, Z., Wu, X., Yin, J., Panjiyar, A., Liu, X., Shen, J. and Wang, H. (2014), "Characterization of a low shrinkage dental composite containing bismethylene spiroorthocarbonate expanding monomer", Int. J. Mol. Sci., 15, 2400-2412.   DOI
9 Gladys, S., Van Meerbeek, B., Braem, M., Lambrechts, P. and Vanherle, G. (1997), "Comparative physico-mechanical characterization of new hybrid restorative materials with conventional glass-ionomer and resin composite restorative materials", J. Dent. Res., 76, 883-894.   DOI
10 Ilie, N. and Stawarczyk, B. (2014), "Quantification of the amount of light passing through zirconia: the effect of material shade, thickness, and curing conditions", J. Dent., 42(6), 684-690.   DOI
11 Janda, R., Roulet, J., Latta, M. and Ruttermann, S. (2006), "The effects of thermocycling on the flexural strength and flexural modulus of modern resin-based filling materials", Dent. Mater., 22, 1103-1108.   DOI
12 Karimzadeh, A. and Ayatollahi, M.R. (2012), "Investigation of mechanical and tribological properties of bone cement by nanoindentation and nano-scratch experiments", Polym Test, 31(6), 828-833.   DOI
13 Lodhi, T.A. (2006), "Surface hardness of different shades and types of resin composite cured with a high power led light curing unit", M.Sc., University of the Western Cape, South Africa, South Africa.
14 Karimzadeh, A., Ayatollahi, M.R., Bushroa, A.R. and Herliansyah, M.K. (2014), "Effect of sintering temperature on mechanical and tribological properties of hydroxyapatite measured by nanoindentation and nanoscratch experiments", Ceram. Int., 40 (7 part A), 9159-9164.   DOI
15 Karimzadeh, A., Ayatollahi, M.R. and Shirazi, H.A. (2014), "Mechanical properties of a dental nano-composite in moist media determined by nano-scale measurement ", Int. J. Mater. Mech. Manuf., 2(1), 67-72.
16 Leprince, J.G., Palin, W.M., Hadis, M.A., Devaux, J. and Leloup, G. (2013), "Progress in dimethacrylate-based dental composite technology and curing efficiency", Dent. Mater., 29(2), 139-156.   DOI
17 Machado, A.L., Puckett, A.D., Breeding, L.C., Wady, A.F. and Vergani, C.E. (2012), "Effect of thermocycling on the flexural and impact strength of urethane-based and high-impact denture base resins", Gerodontol., 29(2), e318-e323.   DOI
18 Melo, M.A.S., Guedes, S.F.F., Xu, H.H.K. and Rodrigues, L.K.A. (2013), "Nanotechnology-based restorative materials for dental caries management", Trend. Biotech., 31(8), 459-467.   DOI
19 Makvandi, P., Ghaemy, M. and Mohseni, M. (2016), "Synthesis and characterization of photo-curable bis-quaternary ammonium dimethacrylate with antimicrobial activity for dental restoration materials", Eur. Polym. J., 74, 81-90.   DOI
20 Maserejian, N.N., Trachtenberg, F.L., Hauser, R., McKinlay, S., Shrader, P., Tavares, M. and Bellinger, D.C. (2012), "Dental composite restorations and psychosocial function in children", Pediatrics, peds-2011.
21 Oliver, W.C. and Pharr, G.M. (2004), "Measurement of hardness and elastic modulus by instrumented indentation: advances in understanding and refinements to methodology", J. Mater. Res., 19, 3-20.   DOI
22 Moszner, N. and Salz, U. (2001), "New developments of polymeric dental composites", Prog. Polym. Sci., 26(4), 535-576.   DOI
23 Nakamura, T., Wakabayashi, K., Kinuta, S., Nishida, H., Miyamae, M. and Yatani, H. (2010), "Mechanical properties of new selfadhesive resin-based cement", J. Prosthod. Res., 54(2), 59-64.   DOI
24 Oliveira, M.A.V.C.d., Quagliatto, P.S., Magalhaes, D. and Biffi, J.C.G. (2012), "Effects of bleaching agents and adhesive systems in dental pulp: a literature review", Brazil. J. Oral Sci., 11, 428-432.   DOI
25 Ozak, S.T. and Ozkan, P. (2013), "Nanotechnology and dentistry", Eur. J. Dent., 7(1), 145-151.
26 Ozturk, E., Chiang, Y.C., Cosgun, E., Bolay, S., Hickel, R. and Ilie, N. (2013), "Effect of resin shades on opacity of ceramic veneers and polymerization efficiency through ceramics", J. Dent., 41, e8-e14.   DOI
27 Price, R.B.T., Felix, C.A. and Andreou, P. (2005), "Knoop hardness of ten resin composites irradiated with high-power LED and quartz-tungsten-halogen lights", Biomater., 26(15), 2631-2641.   DOI
28 Papadogiannis, D., Lakes, R., Papadogiannis, Y., Palaghias, G. and Helvatjoglu-Antoniades, M. (2008), "The effect of temperature on the viscoelastic properties of nano-hybrid composites", Dent. Mater., 24, 257-266.   DOI
29 Park, J., Ye, Q., Topp, E.M., Misra, A., Kieweg, S.L. and Spencer, P. (2010), "Effect of photoinitiator system and water content on dynamic mechanical properties of a light-cured bisGMA/HEMA dental resin", J. Biomed. Mater. Res. A, 93A(4), 1245-1251.
30 Passos, S.P., Kimpara, E.T., Bottino, M.A., Santos -Jr, G.C. and Rizkalla, A.S. (2013), "Effect of ceramic shade on the degree of conversion of a dual-cure resin cement analyzed by FTIR", Dent. Mater., 29(3), 317-323.   DOI
31 Sabbagh, J., Vreven, J. and Leloup, G. (2002), "Dynamic and static moduli of elasticity of resin-based materials", Dent. Mater., 18, 64-71.   DOI
32 Shen, L., Tjiu, W.C. and Liu, T. (2005), "Nanoindentation and morphological studies on injection-molded nylon-6 nanocomposites", Polymer, 46(25), 11969-11977.   DOI
33 Shen, L., Wang, L., Liu, T. and He, C. (2006), "Nanoindentation and morphological studies of epoxy nanocomposites", Macromol. Mater. Eng., 291, 1358-1366.   DOI
34 Shokrieh, M.M., Hosseinkhani, M.R., Naimi-Jamal, M.R. and Tourani, H. (2013), "Nanoindentation and nanoscratch investigations on graphene-based nanocomposites", Polym. Test., 32(1), 45-51.   DOI
35 Sideridou, I.D., Karabela, M.M. and Vouvoudi, E.C. (2011), "Physical properties of current dental nanohybrid and nanofill light-cured resin composites", Dent. Mater., 27(6), 598-607.   DOI
36 Ayatollahi, M.R., Doagou-Rad, S. and Shadlou, S. (2012), "Nano-/microscale investigation of tribological and mechanical properties of epoxy/mwnt nanocomposites", Macromol. Mater. Eng., 297(7), 689-701.   DOI
37 Sowmya, S., Bumgardener, J.D., Chennazhi, K.P., Nair, S.V. and Jayakumar, R. (2013), "Role of nanostructured biopolymers and bioceramics in enamel, dentin and periodontal tissue regeneration", Prog. Polym. Sci., 38(10-11), 1748-1772.   DOI
38 Aguiar, F.H.B., Lazzari, C.R., Lima, D.A.N.L., Ambrosano, G.M.B. and Lovadino, J.R. (2005), "Effect of light curing tip distance and resin shade on microhardness of a hybrid resin composite", Brazil. Oral Res., 19, 302-306.   DOI
39 Aldousiri, B., Dhakal, H., Onuh, S., Zhang, Z. and Bennett, N. (2011), "Nanoindentation behaviour of layered silicate filled spent polyamide-12 nanocomposites", Polym. Test., 30, 688-692.   DOI
40 Askikfgajer, V., Hainety, F.S. and Hainety, A.S. (2010), Filtek$^{TM}$Z350 xt, Universal Restorative System, M. ESPE, USA.
41 Zhou, C., Weir, M.D., Zhang, K., Deng, D., Cheng, L. and Xu, H.H.K. (2013), "Synthesis of new antibacterial quaternary ammonium monomer for incorporation into CaP nanocomposite", Dent. Mater., 29(8), 859-870.   DOI
42 Stewardson, D.A., Shortall, A.C. and Marquis, P.M. (2010), "The effect of clinically relevant thermocycling on the flexural properties of endodontic post materials", J. Dent., 38(5), 437-442.   DOI
43 Tian, M., Gao, Y., Liu, Y., Liao, Y., Xu, R., Hedin, N.E. and Fong, H. (2007), "Bis-GMA/TEGDMA dental composites reinforced with electrospun nylon 6 nanocomposite nanofibers containing highly aligned fibrillar silicate single crystals", Polymer, 48(9), 2720-2728.   DOI
44 Zhang, H., Yao, Y., Zhu, D., Mobasher, B. and Huang, L. (2016), "Tensile mechanical properties of basalt fiber reinforced polymer composite under varying strain rates and temperatures", Polym. Test, 51, 29-39.   DOI
45 Briscoe, B.J. and Sinha, S.K. (2003), "Scratch resistance and localised damage characteristics of polymer surfaces-a review", Materialwissenschaft und Werkstofftechnik, 34(10-11), 989-1002.   DOI
46 Beun, S., Glorieux, T., Devaux, J., Vreven, J. and Leloup, G. (2007), "Characterization of nanofilled compared to universal and microfilled composites", Dent. Mater., 23, 51-59.   DOI
47 Bindu, M.G., Satapathy, B.K., Jaggi, H.S. and Ray, A.R. (2013), "Size-scale effects of silica on bis-GMA/TEGDMA based nanohybrid dental restorative composites", Compos. Part. B-Eng., 53, 92-102.   DOI