• Title/Summary/Keyword: Wear properties

Search Result 1,343, Processing Time 0.03 seconds

Evaluation of Tribological Properties on Piston Ring/Liner Using Accelerative Wear Test (가속마모시험에 의한 피스톤 링/라이너의 마찰마모특성 평가)

  • Song Keunchul;Kim Kyungwoon;Shim Dongseob
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.75-78
    • /
    • 2004
  • Engine power cylinder parts are faced with more severe wear and friction environment. For instance, emission gas recirculation (EGR), one of the most valid technologies related to emission legislation, is known to accelerate wear of piston ring and cylinder liner. Therefore, advanced materials and surface treatments have been developed and adopted successively so that a need exists for an accurate and repeatable friction and wear bench test for various combination of piston ring and cylinder liner that more closely relates to engine test result. This paper introduces accelerative bench wear test method for piston ring and cylinder liner, presents the experimental result of friction and wear properties of piston ring surface treatments that noticed in substitution for hard chrome plating.

  • PDF

Analysis of Sliding Wear Properties for Arc-melted Intermetallic Compounds of Ni3Al, NiAl and TiAl (Arc melting으로 제조한 금속간화합물 Ni3Al, NiAl 및 TiAl의 미끄럼 마모특성 해석)

  • Lee, Han-Young;Kim, Tae-Jun;Cho, Yong-Jae
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.5
    • /
    • pp.267-273
    • /
    • 2009
  • Three types of structural intermetallic compounds, $Ni_3Al$, NiAl and TiAl, having each single phase structure without pores were produced by arc-melting process. Their sliding wear properties were investigated against a hardened tool steel. It was shown that the wear of the intermetallic compounds was hardly occurred against the hardened tool steel. TiAl compound showed the best wear resistance among them. In this case, wear was preferentially occurred on the surface of the hardened tool steel of the mating material which has higher hardness. It could be found that the wear mode on intermetallics without pores by arc-melting process was different from that on its porous layer coated on steel by combustion synthesis.

A Study on the Wear and Heat Resistance Properties of Durable Moldwash Conditions for Al Gravity Die Casting According to Mold Washing Process Condition (알루미늄 중력주조용 내구성 도형제의 도형조건에 따른 내마모 및 내열특성 연구)

  • Kim, Eok-Soo;NamGung, Jung;Park, Jin-Ha;Lee, Kwang-Hak
    • Journal of Korea Foundry Society
    • /
    • v.28 no.5
    • /
    • pp.237-241
    • /
    • 2008
  • This study has been carried out to investigate the wear and heat resistant properties of durable moldwash agent for Al gravity casting according to mold washing process conditions. The wear properties of coated specimen were performed by sliding wear testing machine and heat resistance were evaluated by measuring the loss of coated moldwash agent during emerging of coated specimen in Al melts. During testing, experimental variables were mold surface temperature, moldwash agent/distilled wear, and additive concentrations. The lower additive concentration and mold temperature caused the smooth surface roughness of coated specimen, It was found that the specimen coated with moldwash/water ratio 1:3, additive concentration 9wt% and mold temperature higher than $200^{\circ}C$ showed superior wear and heat treatment. Also, these results were supported by fluidity test.

A Study on Design Properties Affecting in Wearing - Focused on Adult Women's Town Wear - (옷차림에 영향을 미치는 디자인 특성 연구 - 성인여성의 외출복을 중심으로 -)

  • Lee, Eun-Rung;Lee, Kyoung-Hee
    • Fashion & Textile Research Journal
    • /
    • v.6 no.5
    • /
    • pp.549-557
    • /
    • 2004
  • The purpose of this study is to investigate design properties affecting in evaluated image by adult women's town wear in un-limited circumstance. The stimulus, adult women's town wear, were collected from shopping mall, department stores and churches and evaluated by 20's 150 people. Through the estimations, the 76 pictures of 'good image' and 65 pictures of 'bad image', were selected and analyzed by classification categories. The results were as follows : 1) 'Good Image' is classified 6 groups which are like active casual, feminine casual, adult casual, modern, sporty casual, and elegance. 2) "Bad Image' is classified 5 groups which are like easy casual, active casual, soft casual, modern casual, and feminine casual. 3) Central code of adult women's town wear from 'Good Image' are simple, bright, and harmony and 'Bad Image' are complicate, heavy, and inharmony. The coordination, how to wear, is very important to evaluate image of women's town wear with other properties. Also, body shape appeared by important variable in evaluation.

Effects of Process Temperature on the Tribological Properties of Tetrahedral Amorphous Carbon (ta-C) Coating (공정 온도에 따른 사면체 비정질 카본 (ta-C) 코팅의 트라이볼로지적 특성연구)

  • Kang, Yong-Jin;Kim, Do Hyun;Ryu, Hojun;Kim, Jongkuk;Jang, Young-Jun
    • Tribology and Lubricants
    • /
    • v.35 no.6
    • /
    • pp.362-368
    • /
    • 2019
  • In this study, mechanical and tribological properties were investigated by varying the process temperature (50, 100, 125 and 150℃) to reduce internal stress. The internal stress reduction by thermal dissociation ta-C coating film with increasing temperature is confirmed through the curvature radius of the ta-C coating according to the temperature of the SUS plate. As the coating temperature increased, the mechanical properties (hardness, modulus, toughness) deteriorated, which is in agreement with the Raman analysis results. As the temperature increased, the sp2 phase ratio increased owing to the dissociation of the sp3 phase. The friction and wear properties are related to the process temperature during ta-C coating. Low friction and wear properties are observed in high hardness samples manufactured at 50℃, and wear resistance properties decreased with increasing temperature. The contact area is expected to increase owing to the decrease of hardness(72 GPa to 39 GPa) and fracture toughness with increasing temperature which accelerated wear because of the debris generated. It was confirmed that at process temperature of over than 100℃, the bond structure of the carbon film changed, and the effect of excellent internal stress was reduced. However, the wear resistance simultaneously decreased owing to the reduction in fracture toughness. Therefore, in order to increase industrial utilization, optimum temperature conditions that reduce internal stress and retain mechanical properties.

A Study on Wear Properties of Solid lubricating Greaphite Materials (고체윤활 Graphite 소재의 마모 특성에 관한 연구)

  • Yang, Hoyoung;Kim, Jaehoon;Kim, Yeonwook;Ha, Jaeseok;Park, Sunghan;Lee, Hwankyu
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.5
    • /
    • pp.95-100
    • /
    • 2013
  • The important design factors for designing solid lubricating of dynamic seal are tightness, wear resistance and lubricant films. In this study, the effect factors influenced solid lubricating properties of the graphite were analyzed and wear behaviour caused for various test conditions was compared with results obtained from reciprocating wear tests. Also the optimal conditions for formation of lubricant films were investigate to evaluate wear properties of graphite materials. The repeated procedure for the formation of wear particles and lubricant films, and the dissipation of lubricant films was estimated the wear mechanisms with changes of wear depth. Therefore the lubricant film of graphite seal was generated by adhesion of wear particles on the worn surface and it was very useful in wear characteristics.

Effect of the Amount of Free Silicon on the Tribological Properties of Si-SiC (Free Silicon 함량에 따른 Si-SiC 복합재료의 마찰 마모 특성)

  • 김인섭;이병하
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.5
    • /
    • pp.520-528
    • /
    • 1994
  • An investigation was carried out to understand the effect of the amount of free silicon on the tribological properties of Si-SiC. The specimens of dense Si-SiC composites with various amount of free silicon were fabricated in the temperature of 175$0^{\circ}C$ after molding under various pressure. Wear properties were measured by ball-on-plate wear tester under the constant weight of 4 Kgf at constant sliding speed of 500 mm/sec in water. As the result, the Rockwell hardness and fracture strength of Si-SiC composites remained nearly constant up to 16.62 vol% of free silicon in the Si-SiC microstructure. The Si-SiC composites containing the free silicon of 16.62 vol% was considered to be prominent in the tribological properties, which had the friction coefficient of 0.08 and the specific wear rate of 2.4$\times$10-8$\textrm{mm}^2$Kgf-1. The analysis of the wear surface indicated the complicated processes occuring on the surface such as fine polishing, abrasion, microfracture.

  • PDF

Synthesis and Lubrication Properties of Semi-Fluorinated Polyol Esters (불소계 폴리올에스테르의 합성과 윤활 특성)

  • 백진욱;정근우;김영운
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2001.06a
    • /
    • pp.149-155
    • /
    • 2001
  • New semi-fluorinated polyol esters were synthesized by condensation reaction of polyols (NPG and TMP) and carboxylic acids such as 2-ethylhexanoic acid, stearic acid and perfluorooctanoic acid. The structures of polyol esters were confirmed by FT-IR and H-NMR etc. And, the fluorinated polyol esters were insoluble in several oils, however, the semi-fluorinated polyol esters were soluble in several oils depended on the structure of polyol esters. The physical properties such as 4-ball wear property and extreme-pressure (EP) properties were characterized by measuring wear scar diameter through ASTM D2266 and by determining the load-carrying through ASTM D2783 method, respectively. As the results, wear scar diameters of oils in which the semi-fluorinated polyol esters were added were not changed compared to those of not added oils. While extreme-pressure properties remarkably Increased with fluorine contents of the esters depended on the structure of acid moiety and polyol moiety. Also, the extreme-pressure property of semi-fluorinated NPG polyol ester in gasoline engine oil was better than that of commercial Teflon coating additive.

  • PDF

Magnetic Pulsed Compaction of nanostructured Al-Fe-Cr-Ti Powder and wear properties (Al-Fe-Cr-Ti 나노결정 합금분말의 자기펄스 성형 및 마모 특성)

  • Kim, Jun-Ho;Hong, Soon-Jik
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.05a
    • /
    • pp.528-530
    • /
    • 2008
  • The effect of consolidation temperature on the microstructure, density and mechanical properties (especially, wear property) of $Al_{92.5}-Fe_{2.5}-Cr_{2.5}-Ti_{2.5}$ alloy fabricated by gas atomization and magnetic pulsed compaction was investigated. All consolidated alloys consisted of homogeneously distributed fine-grained fcc-Al matrix and intermetallic compounds. Relative higher mechanical properties in the MPCed specimen were attributed to the retention of the nanostructure in consolidated bulk without cracks. The as consolidated bulk by magnetic pulsed compaction showed the enhanced wear properties than that of a general consolidation process. In addition, the wear mechanism and fracture mode of MPCed bulk was discussed.

  • PDF

Analysis of wear properties in Zr alloys with variation of Nb and Sn content (Zr 합금에서 Nb과 Sn의 함량에 따른 마멸특성분석)

  • Lee Young-Ho;Kim Hyung-Kyu
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.64-71
    • /
    • 2003
  • In order to evaluate the effect of alloying elements (Nb and Sn) on the wear resistance of advanced Zr fuel claddings, sliding wear tests have been performed in room temperature air and water and these results were compared with those of commercial alloys such as Zircaloy-4, A and B alloys. As a result, the advanced Zr fuel claddings have a similar wear resistance compared with the commercial alloys. The wear resistance of the advanced Zr fuel claddings is closely releted to the content of Nb and Sn even though the effects of transition elements are involved in deforming wear properties. In the tested specimens with similar Sn content, wear volume became down to a minimum at $0.4\;wt\;\%$ Nb, then rapidly increased at 1.0 wt Nb. This behavior results in the variation of grain size with alloying contents. But Sn did not have a significant effect on the wear volume of advanced Zr fuel claddings below $1.1\;wt\%$. The relationship between alloying elements and wear behaviour was evaluated and discussed using material compatibility factor.

  • PDF