• 제목/요약/키워드: Wear particles

Search Result 370, Processing Time 0.026 seconds

Wear Reduction of Tappet Surface by Undulated Surface (미세요철표면을 이용한 태핏 표면의 마모 저감에 관한 연구)

  • 여창동;김대은
    • Tribology and Lubricants
    • /
    • v.14 no.2
    • /
    • pp.63-74
    • /
    • 1998
  • The damage of cam/tappet surface is one of the major reasons for energy loss in an I.C. engine. High friction causes the accelerated wear of the cam/tappet surfaces which in turn changes the valve opening/closing timing. During the accelerated test evidence of both rolling fatigue and sliding abrasive wear could be found. Based on the results of the accelerated test, a scheme was devised to decrease tappet wear. Wear reduction of the tappet was achieved by using undulated surface topography in the tappet center region. The wear reduction is achieved by trapping of the wear particles in the undulations as well as by increasing the supply of lubricant to the sliding interface.

Prediction of Wear Depth Distribution by Slurry on a Pump Impeller

  • Sugiyama, Kenichi;Nagasaka, Hiroshi;Enomoto, Takeshi;Hattori, Shuji
    • International Journal of Fluid Machinery and Systems
    • /
    • v.2 no.1
    • /
    • pp.21-30
    • /
    • 2009
  • Slurry wear with sand particles in rivers is a serious problem for pump operation. Therefore, a technique to predict wear volume loss is required for selecting wear resistant materials and determining specifications for the maintenance period. This paper reports a method for predicting the wear depth distribution on the blade of an impeller. Slurry wear tests of an aluminum pump impeller were conducted. Prediction results of wear depth distribution approximately correspond with the results of slurry wear tests. This technique is useful for industrial application.

Fretting Wear Characteristics of Inconel 690 Tubes in Room Temperature (인코넬 690 튜브의 상온 프레팅 마멸 특성에 대한 연구)

  • Chung, Il-Sup;Lee, Myung-Ho;Chai, Young-Suck
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.4
    • /
    • pp.329-336
    • /
    • 2009
  • A fretting wear test rig for cross contacting tube specimens, which employs a piezoelectric actuator, has been developed. Along with the simple loading scheme using dead weights, the rig is very simple to be used also. The accuracy was found acceptable. Inconel 690 tubes were tested in room temperature and ambient condition. Normal load and sliding amplitude range up to 35N and $100{\mu}m$, respectively. The sizes of wear scar and the wear volumes were measured, and wear coefficients have been calculated based on those. A study on the fretting wear mechanism of the tubes has been attempted via microscopic observation. Rugged wear surfaces are induced by the separation and adhesion of particles and formation and subsequent fracture of surface layers. Lapped specimens were also tested and abrasive wear seems to be playing a dominant role.

A Study on Friction and Wear Behavior of Carbon Fiber Reinforced Polyetheretherketone (탄소 섬유 보강 폴리에테르에테르케톤의 마찰 및 마모 거동에 관한 연구)

  • Ryoo, Sung-Kuk;Kim, Kyung-Woong
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.772-779
    • /
    • 2000
  • The friction and wear behavior of short carbon fiber reinforced polyetheretherketone was studied experimentally under dry sliding conditions against SCM440(AISI 4140) disks with a different surface roughness and hardness at the low sliding speeds and the high pressures on a pin-on-disk apparatus. Under the low disk surface roughness value the earsplitting noise and stick-slip were occurred. The increased adhesion friction and wear factor with stick-slip made the friction and wear behavior worse. Under the high disk surface hardness the break and falling-off of carbon fibers were accelerated. The carbon fibers fallen off from the matrix were ground into powder between two wear surfaces and this phenomenon caused a abrasive friction and wear factor to increase. So the friction and wear behavior became worse. With the transfer film made of wear particles formed on a disk, the carbon powder film formed on a pin lowered a friction coefficient.

  • PDF

Friction and Wear of Nano-Sized Silica Filled Epoxy Composites

  • Kim, Jae-Dong;Kim, Yeong-Sik;Kim, Hyung-Jin
    • Journal of Power System Engineering
    • /
    • v.18 no.6
    • /
    • pp.174-179
    • /
    • 2014
  • The wear behavior of epoxy matrix composites filled with nano sized silica particles is discussed in this paper. Especially, the variation of the coefficient of friction and the specific wear rate under the various applied load and sliding velocity were investigated for these materials. Wear tests of pin-on-disc mode were carried out and followed by scanning electron microscope observations. The presence of silica filler in epoxy composites was demonstrated significant influence on the friction and wear behavior of epoxy nanocomposites. With the incorporation of silica filler into the epoxy matrix, reduction of the coefficient of friction and specific wear rate were identified. Wear mechanism was discussed by analyzing the worn surface by scanning electron microscope as well.

Improvement of Wear Resistance of Aluminum by Metal-Ceramic Particle Composite Layer (알루미늄표면에 금속-세라믹입자 복합첨가에 의한 내마모성개선)

  • ;;;中田一博;松田福久
    • Journal of Welding and Joining
    • /
    • v.15 no.6
    • /
    • pp.96-104
    • /
    • 1997
  • The present study was aimed to correlate the microstructure and the hardness as well as the wear resistance of the metal-ceramic particulated composite layer on the pure Al plate. The composite layers were constructed by the addition of TiC particles on the surface of Al-Cu alloyed layers by PTA overlaying process. Initially, the Al-Cu alloyed layers were achieved by the deposition of Al-(25 ~ 48%) Cu alloys on the pure Al plate by TIG process. It was revealed that TiC particles were uniformly dispersed without any reaction with matrix in the composite layer. The volume fraction of TiC particles (TiC V F) increased from 12% to 55% with increasing the number of pass of composite layer. Hardnesses of (Al-48%Cu + TiC (3&4layers)) composite layer were Hv450 and Hv560, respectively, due to the increase of TiC V/F. Hardnesses of (Al-Cu + TiC) composite layers decreased gradually with insreasing temperature from 100$^{\circ}$C to 400$^{\circ}$C, and hardnesses at 400$^{\circ}$C were then reached to 1/5 - 1/10 of room temperature hardness depending on the construction of composite layers. The Specific wear of (Al + Tic) layer and Al-48%Cu alloyed layer decreased to 1/10 of the of pure Al, while the specific wear of (Al-48%Cu + TiC (4 layers)) composite layer exhibited 1/15 of that of steel such as SS400 and STS304.

  • PDF

Experimental Study on Damage to Journal Bearing due to Contaminating Particles in Lubricant (윤활유 오염입자에 의한 저널 베어링 손상에 관한 실험적 연구)

  • Song, Chang Seok;Lee, Bora;Yu, YongHun;Cho, Yong Joo
    • Tribology and Lubricants
    • /
    • v.31 no.2
    • /
    • pp.69-77
    • /
    • 2015
  • Recently, there have been reports of severe symptoms of wear in bearings due to foreign substances mixed in lubricants. Therefore, studying the effects of foreign substances (such as combustion products and metallic debris) on the wear characteristics of journal bearings and proposing appropriate management standards for lubricant cleanliness have become necessary. Studies on the effect of particle size and concentration of foreign substances on surface damage have actively progressed in the recent times. These studies indicate the possibility of foreign substances causing direct wear of bearing surfaces. However, experiments conducted until now involve only basic tests such as the Pin-on-Disk test instead of those involving real bearing systems. This study experimentally examines the damage to the surface of a journal bearing due to foreign substances (combustion products and alumina) mixed with the lubricant, as well as the effect of the type and size of particles on its wear characteristics. The study uses an experimental journal bearing similar to a real bearing system for conducting the lubrication test. Hydrodynamic Lubrication (HL) numerical analysis, experiment results, and film parameters are used for calculating the operating conditions required for achieving the desired film thickness, and the results of the analysis are modified for considering the surface roughness. The run-time of the experiment is 10 min including the stabilization process. The experiment results show that alumina particles larger than the minimum film thickness cause significant surface damage.

A Study on the Prediction of Engine Condition of Supersonic Aircraft through the Wear Debris Monitoring Technique (마모입자 분석기술을 이용한 초음속 항공기 엔진의 상태 예측에 관한 연구)

  • 정병학;정동윤
    • Tribology and Lubricants
    • /
    • v.13 no.2
    • /
    • pp.82-88
    • /
    • 1997
  • This paper describes an empirical equation which can be used to predict the engine condition of supersonic aircraft. The equation, which is derived from the trend analysis of JOAP data, represents the concentration of Fe particles in the engine oil. The result of the trend analysis shows that the concentration of Fe particles is a function of running time of engine oil. Meanwhile the slope of Fe concentration is a function of running time of engine. Threfore, the empirical equation was derived as $w=a(t_e).t_o+b$. However, the equation could not enough to diagnose the damaged part of engine quantitatively. To make up for the weak points of the equation, qualitative analysis was carried out. For that purpose wear debris were collected from the abnormal engine and analyzed by EDS to detect the damaged parts of engine.

Performance Evaluation of Thrust Slide-Bearing of Scroll Compressors under R-22 Environment (R-22 냉매 분위기하에서 스크롤 압축기 스러스트 베어링의 윤활특성 평가)

  • Cho, Sang-Won;Kim, Hong-Seok;Lee, Jae-Keun;Lee, Hyeong-Kook;Lee, Byeong-Chul;Park, Jin-Sung
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.590-595
    • /
    • 2006
  • This paper presents the friction and anti-wear characteristics of nano-oil with a mixture of a refrigerant oil and carbon nano-particles in the thrust slide-bearing of scroll compressors. Frictional loss in the thrust slide-bearing occupies a large part of total mechanical loss in scroll compressors. The characteristics of friction and anti-wear using nano-oil are evaluated using the thrust bearing tester for measuring friction surface temperature and the coefficient of friction at the thrust slide-bearing as a function of normal loads up to 4,000 N and orbiting speed up to 3,200 rpm. It is found that the coefficient of friction increases with decreasing orbiting speed and normal force. The friction coefficient of carbon nano-oil is 0.015, while that of pure oil is 0.023 under the conditions of refrigerant gas R-22 at the pressure of 5 bars. It is believed that carbon nano-particles can be coated on the friction surfaces and the interaction of nano-particles between surfaces can be improved the lubrication in the friction surfaces. Carbon nano-oil enhances the characteristics of the anti-wear and friction at the thrust slide-bearing of scroll compressors.

  • PDF

Mechanical and wear properties evaluation of Al/Al2O3 composites fabricated by combined compo-casting and WARB process

  • Vini, Mohamad Heydari;Daneshmand, Saeed
    • Advances in Computational Design
    • /
    • v.7 no.2
    • /
    • pp.129-137
    • /
    • 2022
  • Compo-casting method is one of the popular technique to produce metal based matrix composites. But, one of the main challenges in this process is un-uniform spreading of reinforced subdivisions (particles) inside the metallic matrix and the lack of desirable mechanical properties of the final produced composites due to the low bonding strength among the metal matrix and reinforcement particles. To remove these difficulties and to promote the mechanical properties of these kind of composites, the WARM ARB technique was utilized as supplementary technique to heighten the mechanical and microstructural evolution of the casted Al/Al2O3 composite strips. The microstructure evolution and mechanical properties of these composites have been considered versus different WARM ARB cycles by tensile test, average Vickers micro hardness test, wear test and scanning electron microscopy (SEM). The SEM results revealed that during the higher warm- ARB cycles, big alumina clusters are broken and make a uniform distribution of alumina particles. It was shown that cumulating the forming cycles improved the mechanical properties of composites. In general, combined compo-casting and ARB process would consent making Al/Al2O3 composites with high consistency, good microstructural and mechanical properties.