• Title/Summary/Keyword: Wear model

Search Result 552, Processing Time 0.028 seconds

A CONSIDERATION OF THERMODYNAMIC ASPECTS OF WEAR: ENERGY AND ENTROPY

  • Ling, F.F.;Bryant, M.D.;Doelling, K.L.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.219-220
    • /
    • 2002
  • To establish a thermodynamic basis for degradation, a hypothesis was made on the potential correlation between entropy and degradation for wear of machinery components. This paper reports an experimental study of wear of model machinery component pairs, on an accelerated testing basis. Measured were wear, friction, temperatures, and entropy flow. Results show a strong correlation between the referenced wear and the production of entropy flow. The hypothesis linking wear to entropy led to formulations consistent with the Archard/Holm wear law.

  • PDF

A Study on Roll Wear in the Roll Forming Process (롤포밍 공정에서의 롤 마모에 관한 연구)

  • Kang, Byung-Seok;Kim, Nak-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.11
    • /
    • pp.1881-1888
    • /
    • 2003
  • This study show a numerical method to predict roll wear in the roll forming process. Archard's wear model was reformulated in an elemental form to predict volume of roll wear and then wear depth on the roll was calculated using the results of finite element analysis. Abrasive wear occurs at contact area in the roll forming process and the results of simulation are compared with experimental data in production line. The wear simulation approach with 3-D FEM program for roll forming process, SHAPE-RF is in good agreement with it in tendency.

The Prediction of Tool Wear by Cutting Force Model in the Machining of Die Material (금형강 가공에서 절삭력 모델에 의한 공구마멸의 예측)

  • 조재성;강명창;김정석
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.61-66
    • /
    • 1994
  • Tool condition monitoring is one of the most important aspects to improve productivity and quality and to achieve intelligent machining system. The tool state is classified into three groups as chipping, wear and fracture. In this study, wear of a ceramic cutting tool for hardened die material (SKD11) was investigated. Flank wear was occured more dominant than crarer wear. Therefore, to predict flank wear, the modeling of cutting force has been performed. The modeling of cutting force by an assumption that act the stress distribution on the tool face obtained through a numerical analysis. The relationships between the cutting force and the tool wear can be constructed by machining paraneters with cutting conditions. Experiments were performed under the various cutting conditions to ensure the validity of force models. The theoretical predictions of the flank wear is approximately in good agreement with experimental result.

  • PDF

The Study on the Influence of Pad Wear on Brake Squeal Analysis (브레이크 스퀼 해석에서 패드 마모의 영향에 관한 연구)

  • Lee, Ho-Gun;Son, Min-Hyuk;Seo, Young-Wook;Boo, Kwang-Seok;Kim, Heung-Seob
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.11
    • /
    • pp.930-936
    • /
    • 2008
  • This paper studies the effect of pad at initial stage and wear during braking on the dynamic contact pressure distribution. Wear is influenced by variable factor (contact pressure, sliding speed, radius, temperature) during dynamic braking and variation in contact pressure distribution. Many researchers have conducted complex eigenvalue analysis considering wear characteristic with Lim and Ashby wear map. The conventional analysis method is assumed the pad has smooth and flat surfaces. The purpose of this paper is to validate that wear rate induced by braking is considered for the precise squeal prediction. After obtaining pad wear from experiment, it is incorporated with FE model of brake system. Finally, the comparisons in fugitive nature of squeal will be carried out between the complex eigenvalue analysis and noise dynamometer experiment.

Sliding Contact Analysis of a Spherical Particle between Rubber Seal and Coated Steel Counterface (시일과 코팅된 스틸면 사이의 구형 입자에 의한 미끄럼 접촉 해석)

  • Park, Tae-Jo;Lee, Jun-Hyuk
    • Tribology and Lubricants
    • /
    • v.28 no.6
    • /
    • pp.283-288
    • /
    • 2012
  • In this study, a new sliding contact problem involving an elastomeric seal, a spherical particle and a hard coated steel counterface was modeled to investigate the detailed wear mechanisms related to the sealing surface. The model was also used to design the optimum coating conditions. A three-dimensional finite element contact problem was modeled and analyzed using the nonlinear finite element code, MARC. The deformed steel surface and stress distributions are presented for different coating layers and thicknesses. When the coating thickness is relatively small, the entrapped particle produces surface plastic deformations such as groove and torus. In addition, the sealing surface can be damaged by abrasive wear as well as fatigue wear. For a relatively thick and multi-layered coating, on the other hand, surface plastic deformation does not occur, and the amount of abrasive and fatigue wear is reduced. Therefore, the proposed contact model and results can be used in the design of various sealing systems, further intensive studies are required.

Numerical Wear Analysis of a Three-dimensional Rough Surface (수치적 방법을 이용한 3차원 거친 표면의 마모 해석)

  • Kim, Yunji;Suh, Junho;Kim, Bongjun;Yu, Yonghun
    • Tribology and Lubricants
    • /
    • v.36 no.4
    • /
    • pp.232-243
    • /
    • 2020
  • It is essential to predict the amount of wear and surface parameters for a surface where relative motion occurs. In the asperity-based model for wear prediction, only the average contact pressure can be obtained. Hence, the accuracy of wear analysis is poor. In this study, DC-FFT is used to obtain the pressure of each node, and wear analysis is performed by considering the effect of the pressure gradient. The numerical surface generation method is used to create Gaussian, negatively skewed, and positively skewed surfaces for wear analysis. The spatial and height distributions of each surface are analyzed to confirm the effectiveness of the generated surface. Furthermore, wear analysis is performed using DC-FFT and Archard's wear formula. After analysis, it is confirmed that all peaks are removed and only valleys remain on the surface. The RMS roughness and Sk continue to decrease and Ku increases as the cycle progresses. It is observed that the surface parameters are significantly affected by the radius of curvature of the asperity. This analysis method is more accurate than the existing average wear and truncation models because the change in asperity shape during the wear process is reflected in detail.

Model Identification of Hydraulic Pin-On-Disk type Tribotester with DDV

  • Kim, Seung-Hyun;Lee, Chang-Don;Lee, Jin-Kul
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.170.1-170
    • /
    • 2001
  • This paper developed the model for electro hydraulic force control system by identification method via ARMAX model. Implementation of Identification is performed on Pin-On-Disk type tribotester. The wear mechanism is an important mechanic property to select a material´s life and a optimum work condition. Pin-on-disk type tribotester is popular wear analysis experimental equipment and its mechanism is that adding a force on a rotating disk to simplify two surface contact´s wear experimental condition. Material´s rotating velocity and eccentricity rotation makes disturbance and it affects adding constant force. To get a high performance of force adding part, DDV(Direct Drive Valve) which has pressure control loop is used. To obtain a tribotester´ s ARMAX model, prediction error method(PEM) is used in case force adding part and rotating part is ...

  • PDF

Monitoring of Tool Life through AR Model and Correlation Dimension Analysis (시계열 모델과 상관차원 해석을 통한 공구수명의 감시)

  • 김정석;이득우;강명창;최성필
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.11
    • /
    • pp.189-198
    • /
    • 1998
  • Recently, monitoring of tool life is a matter of common interesting because tool life affects precision, productivity and cost in machining process. Especially flank wear has a direct effect on cutting mechanism, so the various pattern of cutting force is obtained experimentally according to variation of wear condition. By investigating cutting force signal, AR(Autoregressive) modeling and correlation dimension analysis is conducted in turning operation. In this modeling and analysis, we extract features through 6th AR model, correlation integral and normalized correlation integral. After the back-propagation model of the neural network is utilized to monitor tool life according to flank wear. As a result. a very reliable classification of tool life was obtained.

  • PDF

Content Analysis of Jeanwear`s Advertisement -Focusing on Magazine`s Advertisement- (진웨어 광고의 내용분석 -잡지광고를 중심으로-)

  • 이주연;박길순
    • The Research Journal of the Costume Culture
    • /
    • v.5 no.4
    • /
    • pp.80-88
    • /
    • 1997
  • The purpose of this study was to identify the denotating of visual message and linguistic message in the advertisement of Jean-wear, and to identify the image type in the advertisement of Jean-wear. Content analysis was done using the advertisement of Jean-wear from several fashion magazines which were published from January, 1996 to August, 1997. The advertisement of Jean-wear reflects the reality using the photos, and is image appeal type, appeals to the model\`s lifestyle, the western value. And that mostly singles person was appeared in the advertisement means solitude in modern society.

  • PDF

A Study on the Sliding Wear Calculation in Spur Gears (Spur Gear의 미끄럼 마멸율에 관한 연구)

  • 김태완;문석만;강민호;조용주
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.25-34
    • /
    • 1999
  • In this study, the sliding wear in spur gears, using Archard's wear model, is analyzed. Formulas of tooth sliding wear depth along the line of action are derived. The tooth profile is modified Id make a smooth transmission of the normal loads and the cylinder profile for reducing the pressure spike is suggested. The sliding wear rate is calculated with these profiling results. We expect these modification methods to contribute to the reduction of sliding wear in the root and the tip of tooth and tooth edge.

  • PDF