• Title/Summary/Keyword: Wear loss

Search Result 415, Processing Time 0.032 seconds

CHEMICAL DEGRADATION AND WEAR OF LIGHT-CURED COMPOSITE RESINS (광중합형 복합레진의 화학적 분해와 마모에 관한 연구)

  • Yang, Kyu-Ho;Jung, Hee-Kyung;Choi, Nam-Ki;Kim, Seon-Mi
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.34 no.2
    • /
    • pp.273-284
    • /
    • 2007
  • The aim of this study was to evaluate the resistance to degradation and to compare the wear resistance characteristics of four esthetic restorative materials in an alkaline solution(0.1N NaOH). The composite resins studied were Composan LCM flow(Promedica, Germany). Clearfil ST(Kuraray medical, Japan), Durafi VS1(Heraeus Kulzer, U.S.A), Point 4(Kerr, U.S.A). The results were as follows : 1. The mass loss of each brand was $1.02{\sim}6.04%$ and highest value in Durafil VS$(6.04{\pm}0.29%)$. 2. The sequence of the degree of degradation layer depth was in descending order by Durafil VS, Clearfil ST, Point 4 and Composan LCM flow. There were significant differences between Point 4, Composan LCM flow and the others (p<0.001). 3. The sequence of the Si loss was in descending order by Clearfil ST, Durafil VS, Composan LCM flow and Point 4. There were significant differences among the materials (p<0.001). 4. On SEM, destruction of bonding between matrix and filler and on CLSM, the depth of degradation layer of specimen surface was observed. 5. The sequence of maximum wear depth was in descending order by Durafil VS, Composan LCM flow, Point 4 and Clearfil ST. There were no significant differences among the materials (p>0.001) 6. The correlation coefficient between Si loss and degradation layer depth (r=0.892, p<0.01) and Si loss and mass loss(r=0.736, p<0.01) were relatively high. These results indicate that hydrolytic degradation, wear and another factor may consider as evaluation factors of composite resins.

  • PDF

Effect of Corrosion Environment on the Fretting Wear Corrosion of a Hinge Material( I ) (힌지재료의 찰과마멸부식에 미치는 부식환경의 영향( I ))

  • Kwak Nam-In;Lim Uh-Joh;Lee Jong-Rark
    • Journal of the Korean Institute of Gas
    • /
    • v.4 no.1 s.9
    • /
    • pp.26-32
    • /
    • 2000
  • The fretting wear corrosion characteristics between the SM20C and the SM20C, the YBsC3 and the STC4H was experimented by using radical type friction experimental device under the corrosion environment of atmosphere, neutral solution, acid solution and chemical factors of the sea water. The affection of underground water that affect fretting wear corrosion of the SM20C which is moving specimen was more sensitive at the STC4H and more insensible at the YBsC3. The affection of underground water that affect fretting wear corrosion of the STC4H was less, but in the $0.5\%\;H_2SO_4$ and $0.5\%\;HNO_3$ solutions the fretting wear corrosion of the STC4H was more large. The fretting wear corrosion of the SM20C which is moving specimen in the underground water was less than in the $3.5\%\;NaCl$, $0.5\%\;H_2SO_4$ and $0.5\%\;HNO_3$ solutions. As time passed, the fretting wear corrosion is increased in the $HNO_3$ solution and dull in the $0.5\%\;H_2SO_4$ solution.

  • PDF

Effects of Electron Beam Irradiation on Tribological and Physico-chemical Properties of Polyoxymethylene (POM-C) copolymer

  • Rahman, Md. Shahinur;Yang, Jong-Keun;Shaislamov, Ulugbek;Lyakhov, Konstantin;Kim, Min-Seok;Lee, Heon-Ju
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.153-153
    • /
    • 2016
  • Polyoxymethylene copolymer (POM-C) is an attractive and widely used engineering thermoplastic across many industrial sectors owing to outstanding physical, mechanical, self-lubricating and chemical properties. In this research work, the POM-C blocks were irradiated with 1 MeV electron beam energy in five doses (100, 200, 300, 500 and 700 KGy) in vacuum condition at room temperature. The tribological and physico-chemical properties of electron beam irradiated POM-C blocks have been analyzed using Pin on disk tribometer, Raman spectroscopy, SEM-EDS, Optical microscopy, 3D Nano surface profiler system and Contact angle analyzer. Electron beam irradiation at a dose of 100 kGy resulted in a decrease of the friction coefficient and wear loss of POM-C block due to well suited cross-linking, carbonization, free radicals formation and energetic electrons-atoms collisions (physical interaction). It also shows lowest surface roughness and highest water contact angle among all unirradiated and irradiated POM-C blocks. The irradiation doses at 200, 300, 500 and 700 kGy resulted in increase of the friction coefficient as compared to unirradiated POM-C block due to severe chain scission, chemical and physical structural degradation. The electron beam irradiation transferred the wear of unirradiated POM-C block from the abrasive wear, adhesive wear and scraping to mild scraping for the 1 MeV, 100 kGy irradiated POM-C block which is concluded from SEM-EDS and Optical microscopic observations. The degree of improvement for tribological attribute relies on the electron beam irradiation condition (energy and dose rate).

  • PDF

A case of full mouth rehabilitation with orthodontic treatment in patient with extensive tooth erosion and wear using monolithic zirconia prostheses (광범위한 치아부식 및 마모가 있는 환자에서 교정치료와 단일구조 지르코니아 보철물을 이용하여 완전 구강 회복술을 시행한 증례)

  • Yun, Byoung Soo;Kim, Jong Eun;Shim, Jun Sung;Kim, Jee Hwan
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.56 no.4
    • /
    • pp.360-367
    • /
    • 2018
  • Extensive dental erosion and wear will cause serious loss of function and aesthetics in the mouth. In order to recover this condition, careful analysis of the patient's bite relationship is required. In particular, a treatment plan should be established considering the possibility of reproduction of the vertical dimension and centric relation, and appropriateness of the occlusal plane and anterior guidance. Also, the choice of prosthetic materials is an important consideration in patients with severe wear. In this case, patients with overall wear and erosion on tooth was established anterior guidance by orthodontic treatment and fully restored with monolithic zirconia, without increasing vertical dimension.

Effect of Retained Austenite Content on the Wear Properties of Austempered C/V Graphite Iron (오스템퍼링 처리한 C/V 흑연 주철의 마모에 미치는 잔류 오스테나이트량의 영향에 관한 연구)

  • Joo, Do-Jae;Kim, Hong-Beom;Cheon, Byung-Wook;Choi, Chang-Ock
    • Journal of Korea Foundry Society
    • /
    • v.18 no.4
    • /
    • pp.340-348
    • /
    • 1998
  • C/V graphite iron has superior tensile strength, toughness and ductility than grey iron, and better castability than ductile iron. The retained austenite content of C/V graphite iron by austempering treatment affects on the mechanical properties such as ductility, hardness, wear properties and machinability. C/V graphite iron alloyed with Cu and Mo were carried out on the austenitizing at $900^{\circ}C$ for 1 hour, and the austempering at $240{\sim}400^{\circ}C$ for 1 hr. And then the mechanical and wear properties of austempered C/V graphite iron have been investigated by the retained austenite content. In consequence, the retained austenite content was found to be 18.2% in austempering temperature at $240^{\circ}C$, and was increased 39.2% at $400^{\circ}C$. Tensile strength and hardness of austempered C/V graphite iron were decreased as the retained austenite content increased, but elongation was increased. The rolling wear loss were increased as the retained austenite content increased. The wear surface of as-cast became to be rough. The microstructure of austempered C/V graphite iron was became to be acicular ausferrite in austempering at $240^{\circ}C$, and feathery ausferrite at $400^{\circ}C$.

  • PDF

Manufacturing of Ni-Cr-B-Si + WC/12Co Composite Coating Layer Using Laser Cladding Process and its Mechanical Properties (레이저 클래딩 공정을 이용한 Ni-Cr-B-Si + WC/12Co 복합 코팅층의 제조 및 기계적 특성)

  • Ham, Gi-Su;Kim, Chul-O;Park, Soon-Hong;Lee, Kee-Ahn
    • Journal of Powder Materials
    • /
    • v.24 no.5
    • /
    • pp.370-376
    • /
    • 2017
  • In this study we manufacture a Ni-Cr-B-Si +WC/12Co composite coating layer on a Cu base material using a laser cladding (LC) process, and investigate the microstructural and mechanical properties of the LC coating and Ni electroplating layers (reference material). The initial powder used for the LC coating layer is a powder feedstock with an average particle size of $125{\mu}m$. To identify the microstructural and mechanical properties, OM, SEM, XRD, room and high temperature hardness, and wear tests are implemented. Microstructural observation of the initial powder and LC coating layer confirm the layer is composed mainly of ${\gamma}-Ni$ phases and WC and $Cr_{23}C_6$ carbides. The measured hardness of the LC coating and Ni electroplating layers are 653 and 154 Hv, respectively. The hardness measurement from room up to high temperatures of $700^{\circ}C$ result in a hardness decrease as the temperature increases, but the hardness of the LC coating layer is higher for all temperature conditions. Room temperature wear results show that the wear loss of the LC coating layer is 1/12 of the wear level of the Ni electroplating layer. The measured bond strength is also greater in the LC coating than the Ni electroplating.

Surface Hardening and Wear Properties of AISI 410 Martensitic Stainless Steel by High & Low Temperature Gaseous Nitriding (고온 가스 질화와 저온 가스 질화 방법에 따른 AISI 410 마르텐사이트 스테인레스강의 경화층 및 마모 특성)

  • Son, Seok-Won;Lee, Won-Beom
    • Journal of the Korean institute of surface engineering
    • /
    • v.51 no.4
    • /
    • pp.249-255
    • /
    • 2018
  • High temperature and low temperature gaseous nitriding was performed in order to study of the surface hardening and wear properties of the nitrided AISI 410 Martensitic stainless steels. High temperature gaseous nitiridng (HTGN) was carried out using partial pressure $N_2$ gas at $1,100^{\circ}C$ for 10 hour, and Low temperature gaseous nitiridng (LTGN) was conducted in a gas mixture of NH3 and N2 at $470^{\circ}C$ for 10 hour. The nitrided samples were characterized by microhardness measurements, optical microscopy and scanning electron microscopy. The phases were identified by X-ray diffraction and nitrogen concentration was analyzed by GD-OES. The HTGN specimen had a surface hardness of about $700HV_{0.1}$, $350{\mu}m$ of case depth. A ${\sim}50{\mu}m$ thick, $1,250HV_{0.1}$ hard nitrided case formed at the surface of the AISI 410 steel by LTGN, composed nitrogen supersaturated expanded martensite and ${\varepsilon}-Fe_{24}N_{10}$ iron nitrides. Additionally, the results of the wear tests, carried out LTGN specimen was low friction coefficient and high worn mass loss of ball. The increase in wear resistance can be mainly attributed to the increase in hardness and to the lattice distortion caused by higher nitrogen concentration.

The Impact Properties and Wear Resistance of Polybutylene terephthalate (PBT) Cross-linked by Electron Beam Irradiation (전자선 가교된 PBT의 충격 특성 및 내마모 특성 연구)

  • Shin, Bum Sik;Ko, Keum Jin;Jeun, Joon Pyo;Kim, Hyun Bin;Oh, Seung Hwan;Kang, Phil Hyun
    • Journal of Radiation Industry
    • /
    • v.5 no.2
    • /
    • pp.145-149
    • /
    • 2011
  • Poly(butylenes terephthalate) have made large strides in applications of injection, extrusion, and molding material due to their excellent thermal resistance and appropriate mechanical properties. However, PBT was not hard polymer but a soft polymer which caused low absorption of external energy and the defect of being easily broken with the strong impact. Thus, the electron beam irradiation was carried out over a range of irradiation doses from 100 to 1,000 kGy for enhancing the properties. The decreases of $T_m$, $T_c$, and enthalpy were observed as increasing the absorbed dose in the results of DSC analysis. The improvement in the impact strength of PBT was clearly observed as the absorbed dose was increased. This was probably due to the 3-dimensional network structures, resulting in increasing the absorption of impact energy. In addition, the wear properties had increased at higher than 300 kGy. The negative deviation of weight loss confirmed the improvement of the wear properties of PBT, as evidenced by SEM observation on the wear surfaces.

A Study on the Tribological Characteristics of Low Friction Coating Deposited on SUJ2 Bearing Steel (고탄소크롬 베어링강 2종(SUJ2) 베어링강에 증착된 저마찰 코팅의 트라이볼로지적 특성 연구)

  • Kang, Kyung-Mo;Shin, Dong-Gap;Park, Young-Hun;Kim, Se-Woong;Kim, Dae-Eun
    • Tribology and Lubricants
    • /
    • v.34 no.6
    • /
    • pp.254-261
    • /
    • 2018
  • In order to reduce resistance torque and energy loss, minimizing friction between race surface and rolling elements of a bearing is necessary. Recently, to reduce friction in bearing element, solid lubricant coating for the bearing raceway surface has been receiving much attention. Considering the operating conditions of real bearings, verifying the effect of solid lubricant coatings under extreme conditions of high load that is more than 1 GPa is necessary. In this study, we evaluated the friction and wear characteristics of SUJ2 bearing steels deposited by carbon-based coatings (Si-DLC, ta-C), $MoS_2$ and graphite. In case of $MoS_2$ and graphite coatings, different surface treatments were applied to the coatings to verify the effect of surface treatment. A pin-on-disc type tribotester was used to evaluate the tribological characteristics of the coatings. It was possible to quantitatively estimate the friction and wear characteristics of solid lubricant under dry and lubrication conditions. The carbon-based coatings improved the friction and wear properties of SUJ2 bearing steels under the high load condition, but $MoS_2$ and graphite coatings were not suitable for high load conditions due to its low hardness. Different friction and wear behaviors were found for different substrate surface treatment method. Also, it was confirmed that solid lubricant coatings had a more positive effect than just applying the lubricant for improving the tribological characteristics.

The influence of nano-silica on the wear and mechanical performance of vinyl-ester/glass fiber nanocomposites

  • Sokhandani, Navid;Setoodeh, AliReza;Zebarjad, Seyed Mojtaba;Nikbin, Kamran;Wheatley, Greg
    • Advances in nano research
    • /
    • v.13 no.1
    • /
    • pp.97-111
    • /
    • 2022
  • In the present article, silica nanoparticles (SNPs) were exploited to improve the tribological and mechanical properties of vinyl ester/glass fiber composites. To the best of our knowledge, there hasn't been any prior study on the wear properties of glass fiber reinforced vinyl ester SiO2 nanocomposites. The wear resistance is a critical concern in many industries which needs to be managed effectively to reduce high costs. To examine the influence of SNPs on the mechanical properties, seven different weight percentages of vinyl ester/nano-silica composites were initially fabricated. Afterward, based on the tensile testing results of the silica nanocomposites, four wt% of SNPs were selected to fabricate a ternary composite composed of vinyl ester/glass fiber/nano-silica using vacuum-assisted resin transfer molding. At the next stage, the tensile, three-point flexural, Charpy impact, and pin-on-disk wear tests were performed on the ternary composites. The fractured surfaces were analyzed by scanning electron microscopy (SEM) images after conducting previous tests. The most important and interesting result of this study was the development of a nanocomposite that exhibited a 52.2% decrease in the mean coefficient of friction (COF) by augmenting the SNPs, which is beneficial for the fabrication/repair of composite/steel energy pipelines as well as hydraulic and pneumatic pipe systems conveying abrasive materials. Moreover, the weight loss due to wearing the ternary composite containing one wt% of SNPs was significantly reduced by 70%. Such enhanced property of the fabricated nanocomposite may also be an important design factor for marine structures, bridges, and transportation of wind turbine blades.