• Title/Summary/Keyword: Wear Volume

Search Result 353, Processing Time 0.028 seconds

Wear Analysis of a Vibrating Tube supported by Thin Strip Springs incorporating the Supporting Conditions (얇은 판 스프링에 의해 지지되는 튜브의 진동 시 지지조건에 따른 마멸분석)

  • Kim, Hyeong-Gyu;Ha, Jae-Uk;Lee, Yeong-Ho;Heo, Seong-Pil;Gang, Heung-Seok
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.05a
    • /
    • pp.63-70
    • /
    • 2002
  • Wear on the tube-to-spring contact is investigated experimentally. The wear is caused by the vibration of the tube while the springs support it. As for the supporting conditions, applied are the contacting normal force (P) of 5 N, just-contact (P = 0 N) and the gap of 0.1 mm. The gap condition is tried far considering the influence of simultaneous impacting and sliding on wear. Results show that the wear volume increases in the order of the gap, the just-contact and the 5 N conditions. This is explained from the contact geometry of the spring, which is convex of smooth contour. The contact shear force is regarded smaller in the case of the gap existence compared with the other conditions. Wear mechanism is considered from SEM observation of the worn surface. The variation of the normal contact traction is analysed using the finite element analysis to estimate the slip displacement range on the contact with consulting the fretting map previously obtained.

  • PDF

Influence of counter-bodies on the tribological behavior of diamond-like carbon coatings (상대 마찰재에 따른 DLC 코팅의 트라이볼로지적 특성평가)

  • Lee Dong Choon;Yi Jin-Woo;Kim Seock Sam
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.360-367
    • /
    • 2003
  • Diamond-like carbon(DLC) films are considerable research interest because of their widespread applications as protective coatings in areas such as optical windows, magnetic storage disks, car parts, biomedical coatings and as micro-electromechanical devices(MEMs). DLC films were deposited on WC-Co by PECVD using Ar, $C_2H_4$ gas. Tribological tests were conducted using a ball-on-disk type tribometer in dry air. Three kinds of counter-bodies balls were used. The counter-bodies balls are SM45C, SUJ2 and $ZrO_2$(3.17mm in diameter). Wear rate of the samples were calculated after measuring the worn-out volume of the wear track. As results wear test, the higher hardness of counter-bodies, friction coefficient low. As result of XPS estimation, wear debris generated as an oxide lower the friction coefficient.

  • PDF

Optimization of Wear Behavior on Cenosphere -Aluminium Composite

  • Saravanan, V.;Thyla, P.R.;Balakrishnan, S.R.
    • Korean Journal of Materials Research
    • /
    • v.25 no.7
    • /
    • pp.322-329
    • /
    • 2015
  • The magnitude of wear should be at a minimum for numerous automobile and aeronautical components. In the current work, composites were prepared by varying the cenosphere content using the conventional stir casting method. A uniform distribution of particles was ensured with the help of scanning electron microscopy (SEM). Three major parameters were chosen from various factors that affect the wear. A wear test was conducted with a pin-on-disc apparatus; the controlling parameters were volume percentages of reinforcement of 5, 10, 15, and 20%, applied loads of 9.8, 29.42, and 49.03 N, and sliding speeds of 1.26, 2.51, and 3.77 m/s. The design of the experiments (DOE) was performed by varying the different influencing parameters using the full factorial method. An analysis of variance (ANOVA) was used to analyze the effects of the parameters on the wear rate. Using regression analysis, a response curve was obtained based on the experimental results. The parameters in the resulting curve were optimized using the Genetic Algorithm (GA). The GA results were compared with those of an alternate efficient algorithm called Neural Networks (NNs).

A Study on the Wear Behavior of the Cu-TiB2 Composites (Cu-TiB2 복합재료의 마모거동에 관한 연구)

  • Kim Jung-Nam;Choi Jong-Un;Kang Kae-Myung
    • Korean Journal of Materials Research
    • /
    • v.15 no.1
    • /
    • pp.61-65
    • /
    • 2005
  • The titanium $diboride(TiB_2)$ has high strength(750MPa), high melting point $(3225^{\circ}C)\;and\;10\%$ IACS electrical conductivity. On this account, the dispersion hardening $Cu-TiB_2$ composites(MMCs) are a promising candidate for applications as electrical contact materials. MMCs for electrical contact materials can reduce material cost and resource consumption caused by wear, due to its good mechanical and electrical property. In this study, we attempt to prepare MMCs with various volume fraction and particle size of $TiB_2$ by means of hot extruded and cold drawn process. Dry sliding wear tests were performed on a pin-on-disk type wear tester, sliding against SM45C under the different applied loads. After wear testing, the microstructures of the worn surfaces were observed by SEM and the microhardnesses of the subsurface zone were measured.

Experimental Determination of Friction Characteristics for Advanced High Strength Steel Sheets (초고강도강판 마찰특성의 실험적 규명)

  • Kim, N.J.;Keum, Y.T.
    • Transactions of Materials Processing
    • /
    • v.22 no.4
    • /
    • pp.223-228
    • /
    • 2013
  • The friction coefficients of advanced high strength steel sheets were experimentally determined. In the friction test, the pulling and holding forces acting on the sheet for various friction conditions, such as lubricant viscosity, pulling speed, blank holding pressure, sheet surface roughness, and hardness of the sheet were measured and the friction coefficient was calculated based on Coulomb's friction law. While the friction coefficient, generally, decreases as the value of friction factor increases, the factor associated with the sheet surface roughness shows U shape behavior for the friction coefficient. Furthermore, the relationship between friction coefficient and the wear volume, which was computed for the roughness of both sheet surfaces and the friction area, is linearly proportional.

A study on the in-vitro wear of the natural tooth structure by opposing zirconia or dental porcelain

  • Jung, Yu-Seok;Lee, Jae-Whang;Choi, Yeon-Jo;Ahn, Jin-Soo;Shin, Sang-Wan;Huh, Jung-Bo
    • The Journal of Advanced Prosthodontics
    • /
    • v.2 no.3
    • /
    • pp.111-115
    • /
    • 2010
  • PURPOSE. This study was conducted to evaluate clinical validity of a zirconia full-coverage crown by comparing zirconia's wear capacity over antagonistic teeth with that of feldspathic dental porcelain. MATERIALS AND METHODS. The subject groups were divided into three groups: the polished feldspathic dental porcelain group (Group 1), the polished zirconia group (Group 2), and the polished zirconia with glazing group (Group 3). Twenty specimens were prepared from each group. Each procedure such as plasticity, condensation, and glazing was conducted according to the manufacturer's manual. A wear test was conducted with 240,000 chewing cycles using a dual-axis chewing simulator. The degree of wear of the antagonistic teeth was calculated by measuring the volume loss using a three-dimensional profiling system and ANSUR 3D software. The statistical significance of the measured degree of wear was tested with a significant level of 5% using one-way ANOVA and the Tukey test. RESULTS. The degrees of wear of the antagonistic teeth were $0.119{\pm}0.059\;mm^3$ in Group 1, $0.078{\pm}0.063\;mm^3$ in Group 3, and $0.031{\pm}0.033\;mm^3$ in Group 2. Statistical significance was found between Group 1 and Groups 2 and between Group 2 and 3, whereas no statistical significance was found between Group 1 and Group 3. CONCLUSION. Despite the limitations of this study on the evaluation of antagonistic teeth wear, the degree of antagonistic tooth wear was less in zirconia than feldspathic dental porcelain, representing that the zirconia may be more beneficial in terms of antagonistic tooth wear.

Quantitative Assessment of Wear Characteristics of Cr-based Coating Reinforced with Diamond (다이아몬드 강화 Cr 기반 소재의 정량적 마모 특성 평가)

  • Huynh, Ngoc-Phat;Vu, Nga Linh;Chung, Koo-Hyun
    • Tribology and Lubricants
    • /
    • v.38 no.1
    • /
    • pp.15-21
    • /
    • 2022
  • Diamond reinforced Cr-based coating has been proposed as wear-resistant materials. In this study, the friction and wear characteristics of diamond reinforced Cr-based coating are experimentally assessed. The experiments are performed using a pin-on-reciprocating plate tribo-tester under various normal forces with boundary lubrication. The stainless-steel ball is used as a counter material. Prior to the experiments, mechanical properties such as elastic modulus and hardness are determined using nanoscale instrumented indentation. The hardness of the specimen is further determined using a Vickers hardness tester. The specimens before and after the experiments are carefully observed using a confocal microscope to understand the wear characteristics. In addition, the wear volume and wear rate of the specimens are determined based on the confocal microscope data. The results show that the friction coefficients are 0.096-0.100 under 20-40 N normal forces. Furthermore, the wear rates of the diamond reinforced Cr-based coating and the stainless steel ball under 20-40 N normal forces are found to be 12.8 × 10-8 mm3/(Nm)-15.5 × 10-8 mm3/(Nm) and 1.9 × 10-8 mm3/(Nm)-3.9 × 10-8 mm3/(Nm), respectively. However, the effect of the normal force on wear rates is not clearly observed, which may be associated with the flattening of the ball. The results of the study may be useful for the tribological applicability of diamond reinforced Cr-based coating as wear-resistant materials.

AN IN-VITRO WEAR STUDY OF INDIRECT COMPOSITE RESINS AGAINST HUMAN ENAMEL (법랑질에 의한 수종의 간접복합레진의 마모에 관한 연구)

  • Yi, Hyun-Jeong;Jeon, Young-Chan;Jeong, Chang-Mo;Jeong, Hee-Chan
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.45 no.5
    • /
    • pp.611-620
    • /
    • 2007
  • Statement of problem: Second-generation indirect composite resins have been improved flexural strength, compressive strength, hydrolytic degradation resistance, wear resistance compared to first-generation indirect composite resins, but there are still some problems as hydrolysis and low wear resistance. Some manufacturers claim that wear resistance of their materials has been improved, but little independent study has been published on wear properties of these materials and the properties specified in the advertising materials are largely derived from in-house or contracted testing. Purpose: This study was to evaluate the wear of indirect composite resins (SR Adore, Sinfony, Tescera ATL) and gold alloy against the human enamel. Material and method: Extracted human incisors and premolars were sectioned to $2{\times}2{\times}2mm$ cube and embedded in the clear resin and formed conical shaped antagonist to fit the jig of pin-on-disk tribometer. Total 20 antagonists were stored in distilled water. Five disk samples, 24mm in diameter and 1.5mm thick, were made for each of three groups of indirect composite resins and gold alloy group, and polished to #2,000 SiC paper on auto-polishing machine. Disk specimens were tested for wear against enamel antagonists. Wear test were conducted in distilled water using a pin-on-disk tribometer under condition (sliding speed 200rpm contact load 24N, sliding distance 160m). The wear of the enamel was determined by weighing the enamel antagonist before and after test, and the weight was converted to volumes by average density. The wear tracks were analyzed by scanning electron microscopy and surface profilometer to elucidate the wear mechanisms. Statistical analysis of the enamel wear volume, wear track depth and wear tract width of disk specimens were accomplished with one-way ANOVA and the means were compared for significant differences with Scheffe's test. Results: 1. The enamel wear was most in gold alloy, but there were no statistically significant differences among all the groups (P>.05). 2. In indirect composite resin groups, the group to make the most shallow depth of wear tract was Sinfony, followed by Tescera ATL, SR Adoro (P<.05). Gold alloy was shallower than Sinfony, but there was no statistically significant difference between Sinfony and gold alloy (P>.05). 3. The width of wear tract of SR Adore was larger than the other groups (P<.05), and there were no statistically significant differences among the other groups (P>.05). 4. SEM analysis revealed that Sinfony and gold alloy showed less wear scars after test, Tescera ATL showed more wear scars and SR Adore showed the most. Conclusion: Within the limits of this study, Sinfony and gold alloy showed the least wear rates and showed similar wear patterns.

Mechanical Properties and Wear Performance of the Al7075 Composites Reinforced with Bimodal Sized SiC Particles (이종입자 강화 SiC/Al7075 금속복합재료의 압축특성 및 마모특성 연구)

  • Lee, Donghyun;Cho, Seungchan;Kim, Yangdo;Lee, Sang-Kwan;Lee, Sang-Bok;Jo, Ilguk
    • Composites Research
    • /
    • v.30 no.5
    • /
    • pp.310-315
    • /
    • 2017
  • In this study, we have investigated microstructure, mechanical properties and wear characteristic of aluminum metal matrix composites with a high volume fraction and uniformly dispersed SiC particles which produced by a liquid pressing process. The volume fraction of bimodal SiC/Al7075 composite was 12% higher than that of the monomodal SiC/Al7075 composite and a compressive strength is increased about 200 MPa. As a result of the abrasion test, the wear width and depth of the bimodal SiC/Al7075 composite were $285.1{\mu}m$ and $0.45{\mu}m$, respectively. The coefficient of friction of bimodal SiC/Al7075 was 0.16.