• 제목/요약/키워드: Wear Plate

검색결과 175건 처리시간 0.024초

CoCr 기반 합금의 초기 마모 특성에 대한 정량적 평가 (Quantitative Assessment of Initial Wear Characteristics of CoCr-Based Alloys)

  • 차수빈;김회진;후인 옥-팟;정구현
    • Tribology and Lubricants
    • /
    • 제36권4호
    • /
    • pp.199-206
    • /
    • 2020
  • CoCr-based alloys have been developed as wear-resistant materials owing to their excellent mechanical properties and strong wear resistance. The purpose of this study is to experimentally assess the frictional and wear characteristics of CoCr-based alloys slid against two different counter materials subjected to various normal forces to determine the expansion applicability of CoCr-based alloys. CoCrMo and CoCr alloys were selected as the target materials and NiCr and NiCrB alloys as counter materials. Experimental tests were performed using a pin-on-reciprocating plate tribo-tester under dry lubrication. Before performing the tests, the surface of the specimens was observed through confocal microscopy and the hardness was measured using a micro-Vickers hardness tester. The wear volume of the plate was calculated at the end of the tests using confocal microscope data, and the wear rate was quantitatively obtained based on Archard's wear law. From the results, the wear rates of the CoCrMo specimens that slid against NiCr and NiCrB are 7.69 × 10-6 ㎣/Nm and 5.26 × 10-6 ㎣/Nm, respectively. The wear rates of the CoCr specimens that slid against NiCr and NiCrB were higher than those of the CoCrMo specimens by factors of approximately 4 and 8, respectively. The CoCrMo specimens further exhibited lower friction characteristics than the CoCr specimens. The findings of this study will be useful for expanded applications of CoCr-based alloys as wear-resistant materials for various mechanical parts.

프레팅 마멸계수 및 마찰계수 측정에 관한 연구 (Measurement of Wear and Friction Coefficients for the Prediction of Fretting Wear)

  • 조용주;김태완
    • Tribology and Lubricants
    • /
    • 제28권3호
    • /
    • pp.124-129
    • /
    • 2012
  • The prediction of fretting wear is a significant issue for the design of contacting mechanical components such as flexible couplings and splines, jointed structures and so on. In our earlier study, we developed a numerical model to predict the fretting wear using boundary element method. The developed algorithm needs experimental fretting wear coefficients and friction coefficients between two moving materials to get more reliable results. In this study, therefore, we demonstrated the measurement method of the fretting wear coefficients and friction coefficients using disk on plate tribometer with piazo actuator and gap sensor. For four different material combinations, the fretting wear coefficients and friction coefficients are acquired through the fretting wear experiment and the analysis of the measured values. Thess results are useful to predict the quantative fretting wear rate in the developed algorithm.

SEM 관찰에 의한 세라믹의 구름마모기구 (Rolling Wear Mechanism of Ceramics by SEM Observation)

  • Kim, Seock-Sam;Kato, Kohji;Hokkirigawa, Kazuo
    • Tribology and Lubricants
    • /
    • 제5권1호
    • /
    • pp.36-43
    • /
    • 1989
  • Scanning electron microscopic observations were carried out on the worn surface and the wear debris of ceramic materials to investigate the wear mechanism of those in dry rolling contact. It was found from the scanning electron microscopic observations that the wear in ceramic materials is related to brittle fracture and has two types of wear mechanisms, small scale wear and larvae scare wear. Plate-like wear debris were created from the initial surface cracks and defects. The small scale wear was related to real contact area and large scale wear was related to HertzJan contact area. A wear model was proposed on the basis of scanning electron microscopic observations.

탄소 섬유 복합재료의 마찰 및 마모 특성 (Friction and Wear Characteristics of Graphite Fiber Composites)

  • 심현해;권오관;유재륜
    • Tribology and Lubricants
    • /
    • 제5권2호
    • /
    • pp.94-100
    • /
    • 1989
  • Friction and Wear behavior of continuous graphite fiber composites was studied for different fiber orientations against the sliding direction. The effect of fiber orientation on friction and wear of the composite and on the deformation of the counterface was investigated experimentally. Pin on disk type testing machine was built and employed to generate the friction and wear data. A graphite fiber composite plate was produced by the bleeder ply molding in an autoclave and machined into rectangular pin specimens with specific fiber orientations, i.e., normal, transverse, and longitudinal directions. Three different wear conditions were employed for two different periods of time, 24 and 48 hours. The wear track of the worn specimens and the metal counterface was examined with a scanning electron microscope (SEM) to observe the damaged fibers on the surface and wear film generation on the counterface. Wear mechanism of the composite during sliding wear is proposed based on the experimental results.

이산 요소법을 이용한 골재 입자의 혼합 및 배출 시 골재 거동 및 강판 마모에 관한 연구 (Discrete Element Method for Defining the Dynamic Behavior and Abrasion of Gravel in Mixer Trucks during Mixing and Discharging)

  • 유승훈;우호길
    • 한국기계가공학회지
    • /
    • 제19권12호
    • /
    • pp.34-41
    • /
    • 2020
  • Ready-mixed concrete is unconsolidated concrete typically transported to construction sites by using mixer trucks. A proper rotation of concrete is necessary to prevent its solidification in mixer trucks during transport: in accordance with the manufacturing method and quality inspection prescribed in KSF4009, this movement is maintained after the manufacturing of concrete in professional production plants and the addition of water, solid materials, and admixtures. Unfortunately, mixer truck parts wear out over long periods of time. In order to improve the wear resistance of the main part of mixer trucks, we used a steel plate with good wear resistance or partially added a reinforcement plate. In this study, we first tested the properties of concrete (as required for the DEM), and then carried out mixing and discharge simulations to define the actual operating conditions of mixer trucks. For each condition, we calculated the amount and location of wear. The reliability of our results was finally verified by comparing them with the measurement values. Overall, this study provided basic data for an optimal design of mixer trucks: one that would reduce the vehicles' weight and production costs.

0.27C-0.70Ni-1.42Cr-0.20Mo 내마모강의 기계적 성질에 따른 마모특성 (Effects of Mechanical Properties on Wear Resistance of 0.27C-0.70Ni-1.42Cr-0.20Mo Steel)

  • 이용희;한철호;신정호;장병록
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2001년도 추계학술대회 논문집
    • /
    • pp.260-263
    • /
    • 2001
  • Mechanical properties have been accepted to be major factor to improve wear resistance. The effect of mechanical properties on wear resistance of 0.27C-0.70Ni-1.42Cr-0.20Mo steel was studied under various test conditions. It is clear that yield strength, tensile strength, impact value, and hardness are strongly related each other. Wear resistance tests as pin on plate type and dry sand / rubber wheel type proved to be that wear depends on mechanical properties. Microstructures were also observed to make clear the wear properties. At quenching and low temperature tempering, the specimen has a good wear resistance.

  • PDF

마멸입자가 운동이력이 다른 금속재료의 마찰 마멸현상에 미치는 영향

  • 황동환;김대은;이상조
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1995년도 추계학술대회 논문집
    • /
    • pp.807-810
    • /
    • 1995
  • The effects of weae particles on the friiction and wear behavior of metals in dry sliding conditions are presented. The tribological test were performed using pure metal specimens which were selected based on their degrees of compatibility and hardness ratio. Friction and wear experiments were conducted using both pin-on-disk and reciprocating pin-on-plate type tribotesters to investigate the effect of motion history. Experimental results show that in the case of dry sliding the frictional behavior observed during pin-on-disk test differed form that of pin-on-reciprocator test for the given set of material pairs. The friction coefficient and wear rate were found to be higher for the pin-on-disk tests. It is suspected that the sliding motion of the pin affects the wear particle dynamics, which in turn influences the frictional behavior. The effect of material pair properties seemed to be relatively smaller than that of wear particles. The results of this paper is expected to aid in the design of mechanical systems for best tribological performance.

  • PDF

탄화 티타늄 금속기 복합재에 대한 상대재의 마모거동 (Abrasiveness Behavior of Counterpart Sliding Against Titanium Carbide Based Metal Matrix Composite)

  • 이정근
    • 한국분말재료학회지
    • /
    • 제13권6호
    • /
    • pp.450-454
    • /
    • 2006
  • Wear of steel plate was measured during unlubricated sliding against TiC composites. These composites consist of round TiC grains and steel matrix. TiC grain itself exhibits low surface roughness and round shape, which does not bring its counterpart into severe damage from friction. In our work a classical experimental design was applied to find out a dominant factor in counterpart wear. The analysis of the data showed that only the applied load has a significant effect on the counterpart wear. Wear rate of counterpart increased non-linearly with applied load. Amount of wear was discrepant from expectation of being in proportion to the load by analogy with friction force. Our experimental result from treating matrix variously revealed bimodal wear behavior between the composites and counterpart where a mode seems to result from the special lubricant characteristic of TiC grains, and the other is caused by metal-to-metal contact. The two wear mechanisms were discussed.

Hole quality assessment of drilled CFRP and CFRP-Ti stacks holes using polycrystalline diamond (PCD) tools

  • Kim, Dave;Beal, Aaron;Kang, Kiweon;Kim, Sang-Young
    • Carbon letters
    • /
    • 제23권
    • /
    • pp.1-8
    • /
    • 2017
  • Polycrystalline diamond (PCD) tools possessing high hardness and abrasive wear resistance are particularly suited for drilling of carbon fiber reinforced plastic (CFRP) composites, where tool life and consistent hole quality are important. While PCD presents superior performance when drilling CFRP, it is unclear how it performs when drilling multi-stack materials such as CFRP-titanium (Ti) stacks. This comparative study aims to investigate drilling of a Ti plate stacked on a CFRP panel when using PCD tools. The first sequence of the drilling experiments was to drill 20 holes in CFRP only. CFRP-Ti stacks were then drilled for the next 20 holes with the same drill bit. CFRP holes and CFRP-Ti stack holes were evaluated in terms of machined hole quality. The main tool wear mechanism of PCD drills is micro-fractures that occur when machining the Ti plate of the stack. Tool wear increases the instability and the operation temperature when machining the Ti plate. This results in high drilling forces, large hole diameter errors, high surface roughness, wider CFRP exit thermal damage, and taller exit Ti burrs.

저항 클래딩법에 의해 형성된 내마모성 WC-6.5Co 클래딩층의 미크로조직 및 내마모성능 (Microstructure and wear performance of WC-6.5%Co cladding layer by electric resistance welding)

  • 이진우;배명일;김상진;이영호
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2006년 추계학술발표대회 개요집
    • /
    • pp.120-122
    • /
    • 2006
  • This study deals with characterizations of microstructure and wear performance of a cladding layer, product on 1.9 mm-thick mild steel plate by the electric resistance welding, of composite metal powder of Coarse WC-6.5%Co and high carbon alloy(SHA). The cladding layer was examined and tested fur microstructural features, chemical composition, hardness, wear performance and wear mechanism. The cladding layer have two different matrix were observed by an optical microscope and EPMA. The one was the coarse WC-6.5Co structure. The other was the melted SHA with surrounding the WC-6.5Co structure. The hardness of WC-6.5Co was 1210HV. The hardness of SHA was 640HV. In comparison by wear rate, the cladding layer showed the remarkable wear performance that was 15 times of SM490 and about 62% of D2.

  • PDF