• Title/Summary/Keyword: Wear Cutting Force

Search Result 267, Processing Time 0.028 seconds

Diamond micro-cutting of the difficult -to -cut materials using Electrolysis (전기분해를 이용한 난삭재의 다이아몬드 미세가공)

  • 손성민;손민기;임한석;안중환
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.951-954
    • /
    • 2000
  • This paper presents a new cutting method, i.e. diamond cutting, aided by electrolysis, in order to cut ferrous materials with diamond tools. Diamond cutting is widely applied in manufacturing ultraprecision parts such as magnetic disk, polygon mirror, spherical/non-spherical mirror and copier drum, etc. because of the diamond tool edge sharpness. In general, however, diamond cutting cannot be applied to cutting steels, because diamond tools wear excessively in cutting iron based materials like steel due to their high chemical interaction with iron in high temperature. In order to suppress the diffusion of carbon from the diamond tool and to reduce increase of cutting force due to size effect, we attempt to change chemically the compositions of iron based materials using electrolysis in a limited part which will be soon cut. Through experiments under several micro-machining and electrolysis conditions, cutting using electrolysis, compared to conventional cutting, was found to result in a great decrease of the cutting force, a better surface and much less wear tool.

  • PDF

The effect of coating condition of milling cutter on cutting force increase rate (밀링 공구의 코팅 조건이 절삭력 증가율에 미치는 영향)

  • 문창성;김준현;최석우;김주현
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.04a
    • /
    • pp.95-100
    • /
    • 2001
  • Recently, coated milling cutters are widely used for improving the productivity of cutting processes through high speed cutting and longer tool life. In metal cutting, cutting force increase rate is important factor to diagnose the cutting conditions because the amount of tool wear directly influences the cutting forces. As the cutting length increases, the worn cutter increases the cutting forces. In this study, the effect of coating process of end milling cutter on the cutting performance, especially on the cutting force increase rate, is investigated. The results acquired through the cutting test measuring cutting force increase rate show that not only the injection quantity of $N_2$ and Ar but also mean temperature influence the cutting force increase rate during the end milling process.

  • PDF

A Study on the Evaluation of End Mills for High Speed Machining (고속용 엔드밀의 성능평가에 관한 연구)

  • 이정길;유중학;김문기;국정한
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.833-837
    • /
    • 2000
  • The purpose of this study is an evaluation of end mills to develop appropriate tools for the high speed machining. First of all, several flat end mills which are produced by different makers are selected to analyze the performances of the tools. Experimental works are also executed to measure cutting force, tool wear and surface roughness for different cutting conditions. And then the results are compared and analyzed for developing optimal cutting tool in the high speed condition. Especially, analysis about tool wear is introduced in this research.

  • PDF

A Study on Machining Characteristics of Single-insert and Multi-insert Face Milling (단인과 다인 정면밀리의 가공특성에 관한 연구)

  • Kim, S.I.;Lee, W.R.;Kim, T.Y.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.4
    • /
    • pp.19-27
    • /
    • 1995
  • Face milling is required to study cutting process with a view of multipoint cutter. This experimental study mainly deals with the single and multi-insert cutting characteristics using coated tool. Because metal cutting of the single and multi-insert has a large relation to the improvement of productivity, the economic cutting process can be achieved by the analysis of proper metal cutting mechanism. Therefore, machining characteristics of face molling in this paper has been studied by investigating the role of different insert number which is concerned with mean cutting force, the RMS values of AE(acoustic emission) signal, tool life and surface roughness in milling SS 41 and SUS 304. The cutting force and AE signal are monitored to make an analysis of cutting process. The surface roughness of the specimens machined by inserts of different numbers is measured at different speeds, feeds and depth of cut. The width of flank wear is also observed.

  • PDF

Performance Evaluation on the Endmill of High Speed Machining for Selection of Tungsten Carbide (WC-Co) Material (초경소재 선정을 위한 고속가공의 엔드밀 성능 평가)

  • Kwon, Dong-Hee;Kim, Jeong-Suk;Kim, Min-Wook;Jeong, Young-Keun;Kang, Myung-Chang
    • Journal of Powder Materials
    • /
    • v.15 no.5
    • /
    • pp.359-364
    • /
    • 2008
  • To satisfy the demand of higher cutting performance, mechanical properties with tungsten carbide (WC-Co) tool materials were investigated. Hardness and transverse rupture strength with WC grain size, Co content and density were measured. Compared to H, K, and S manufacture maker as tungsten carbide (WC-Co) tool materials were used for high-speed machining of end-milling operation. The three tungsten carbide (WC-Co) tool materials were evaluated by cutting of STD 11 cold-worked die steel (HRC25) under high-speed cutting condition. Also, tool life was obtained from measuring flank wear by CCD wear measuring system. Tool dynamometer was used to measure cutting force. The cutting force and tool wear are discussed along with tool material characteristics. Consequently, the end-mill of K, H manufacture maker showed higher wear-resistance due to its higher hardness, while the S maker endmill tool showed better performance for high metal removal.

Selection of Machining Inclination Angle of Tool Considering Tool Wear in High Speed Ball End Milling (고속 볼앤드밀링에서 공구마모를 고려한 공구의 가공경사각 선정)

  • Ko, Tae-Jo;Jung, Hoon;Kim, Hee-Sool
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.9
    • /
    • pp.135-144
    • /
    • 1998
  • High speed machining is a key issue in die and mold manufacturing recently. Even though this technology has great potential of high productivity. tool wear accelerated by high cutting speed to the hardened materials is other barrier. In this research, we attempted to reduce tool wear by considering tool inclination angle between tool and workpiece. The boundary lines describing machined sculptured surfaces were represented by both of cutting envelop condition and the geometric relationship of successive tool paths. Chip cross section, and cutting length could be obtained from the calculated cutting edge and the rotational engagement angle. From the simulation results, machining inclination angle of tool of $15^\circ$ was good enough from the point of tool wear and cutting force, and this value was verified through the cutting experiment of high speed ball end milling.

  • PDF

Hard Turning Machinability of V30 Cemented Carbide with PCD, cBN and PcBN Cutting Tool (초경합금재의 하드터닝에서 공구재종에 따른 절삭성)

  • Heo, Sung-Jung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.12
    • /
    • pp.47-54
    • /
    • 2008
  • Hard turning process can be defined as a single-point machining process carried out on "hard" materials. The process is intended to replace or limit traditional grinding operations that are expensive, environmentally unfriendly, and inflexible. The purpose of this study is to achieve a systematic understanding of machining characteristics and the effects of machining parameters on cutting force, tool wear shape and chip formation by the outer cutting of a kind of wear resistant tungsten carbide V30. Hard turning experiments were carried out on this alloy using the PCD (Poly Crystalline Diamond), cBN (cubic Boron Nitride) and PcBN (Polycrystalline cubic Boron Nitride) cutting tools. The PcBN and the usual cBN tools were used to be compare with the PCD tool and the dry turning was carried out. The PcBN is attractive as the tool material which replaces the PCD. The tool wear width and cutting force were measured, and the worn tool and chip were observed. The difference of the tool wear mechanism among the three tool materials was investigated.

Monitoring of Tool Life through AR Model and Correlation Dimension Analysis (시계열 모델과 상관차원 해석을 통한 공구수명의 감시)

  • 김정석;이득우;강명창;최성필
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.11
    • /
    • pp.189-198
    • /
    • 1998
  • Recently, monitoring of tool life is a matter of common interesting because tool life affects precision, productivity and cost in machining process. Especially flank wear has a direct effect on cutting mechanism, so the various pattern of cutting force is obtained experimentally according to variation of wear condition. By investigating cutting force signal, AR(Autoregressive) modeling and correlation dimension analysis is conducted in turning operation. In this modeling and analysis, we extract features through 6th AR model, correlation integral and normalized correlation integral. After the back-propagation model of the neural network is utilized to monitor tool life according to flank wear. As a result. a very reliable classification of tool life was obtained.

  • PDF

The relation of TiN coating condition of end-mill and cutting force increase rate (엔드밀의 TiN 코팅조건과 절삭력 증가율과의 관계)

  • 최석우;이위로;최광진;백영남
    • Journal of Surface Science and Engineering
    • /
    • v.34 no.4
    • /
    • pp.337-341
    • /
    • 2001
  • TiN coating of high speed end mill is recently generalized. The study of coating layer using ion plating is mainly about the coating method and the why of the longer life of coated tools. In CNC machning process, metal cutting isn't carry out until the tools including the end-mill and so on are fractured. Namely, it is difficult precision processing when the cutting force of the cutting tool is near the limit the fracture cutting force. So, the estimate of the life by wear and fracture is important. Therefore, this study is about the method to estimate the capacity of the coating layer in relation to the tendency of cutting force and the influence of the cutting capacity of coated end-mill by the condition N2, Ar, temperature. The cutting length is in inverse proportion to the cutting force ratio. So, the life of the TiN coated end mill can be predicated by the ratio of the increase of the cutting force.

  • PDF

RSM-based MOALO optimization and cutting inserts evaluation in dry turning of AISI 4140 steel

  • Hamadi, Billel;Yallese, Mohamed Athmane;Boulanouar, Lakhdar;Nouioua, Mourad;Hammoudi, Abderazek
    • Structural Engineering and Mechanics
    • /
    • v.84 no.1
    • /
    • pp.17-33
    • /
    • 2022
  • An experimental study is carried out to investigate the performance of the cutting tool regarding the insert wear, surface roughness, cutting forces, cutting power and material removal rate of three coated carbides GC2015 (TiCN-Al2O3-TiN), GC4215 (Al2O3-Ti(C,N)) and GC1015 (TiN) during the dry turning of AISI4140 steel. For this purpose, a Taguchi design (L9) was adopted for the planning of the experiments, the effects of cutting parameters on the surface roughness (Ra), tangential cutting force (Fz), the cutting power (Pc) and the material removal rate (MRR) were studied using analysis of variance (ANOVA), the response surface methodology (RSM) was used for mathematical modeling, with which linear mathematical models were developed for forecasting of Ra, Fz, Pc and MRR as a function of cutting parameters (Vc, f, and ap). Then, Multi-Objective Ant Lion Optimizer (MOALO) has been implemented for multi-objective optimization which allows manufacturers to enhance the production performances of the machined parts. Furthermore, in order to characterize and quantify the flank wear of the tested tools, some machining experiments were performed for 5 minutes of turning under a depth of 0.5 mm, a feed rate of 0.08 mm/rev, and a cutting speed of 350 m/min. The wear results led to a ratio (VB-GC4215/VB-GC2015) of 2.03 and (VB-GC1015/VB-GC2015) of 4.43, thus demonstrating the efficiency of the cutting insert GC2015. Moreover, SEM analysis shows the main wear mechanisms represented by abrasion, adhesion and chipping.