• Title/Summary/Keyword: Weapon Engagement Zone

Search Result 3, Processing Time 0.015 seconds

Air-Launched Weapon Engagement Zone Development Utilizing SCG (Scaled Conjugate Gradient) Algorithm

  • Hansang JO;Rho Shin MYONG
    • Korean Journal of Artificial Intelligence
    • /
    • v.12 no.2
    • /
    • pp.17-23
    • /
    • 2024
  • Various methods have been developed to predict the flight path of an air-launched weapon to intercept a fast-moving target in the air. However, it is also getting more challenging to predict the optimal firing zone and provide it to a pilot in real-time during engagements for advanced weapons having new complicated guidance and thrust control. In this study, a method is proposed to develop an optimized weapon engagement zone by the SCG (Scaled Conjugate Gradient) algorithm to achieve both accurate and fast estimates and provide an optimized launch display to a pilot during combat engagement. SCG algorithm is fully automated, includes no critical user-dependent parameters, and avoids an exhaustive search used repeatedly to determine the appropriate stage and size of machine learning. Compared with real data, this study showed that the development of a machine learning-based weapon aiming algorithm can provide proper output for optimum weapon launch zones that can be used for operational fighters. This study also established a process to develop one of the critical aircraft-weapon integration software, which can be commonly used for aircraft integration of air-launched weapons.

Computation Algorithm for Dynamic Launch Zone of Air-to-Air Missiles (공대공 유도탄의 동적발사영역(DLZ) 산출 알고리듬)

  • Park, Sang-Sup;Kim, Do-Wan;Hong, Ju-Hyeon;Ryoo, Chang-Kyung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.9
    • /
    • pp.762-772
    • /
    • 2014
  • A weapon control algorithm equipped on a fighter is closely related to the mission accomplishment and fighter survivability during engagement. The weapon control algorithm typically provides a pilot the dynamic launch zone(DLZ), the target shoot-down range of air-to-air missiles, in the head-up display(HUD). DLZ is produced by an engagement range computation algorithm. In this paper, the components of DLZ for AIM-9 and AIM-120 air-to-air missiles are introduced. The real-time computation algorithm for DLZ based on the pseudo 6-DOF program is then addressed The operational aspects of DLZ algorithm for the air-to-air missiles to various engagement scenarios is investigated vis simulations.

Analysis of Survivability for Combatants during Offensive Operations at the Tactical Level (전술제대 공격작전간 전투원 생존성에 관한 연구)

  • Kim, Jaeoh;Cho, HyungJun;Kim, GakGyu
    • The Korean Journal of Applied Statistics
    • /
    • v.28 no.5
    • /
    • pp.921-932
    • /
    • 2015
  • This study analyzed military personnel survivability in regards to offensive operations according to the scientific military training data of a reinforced infantry battalion. Scientific battle training was conducted at the Korea Combat Training Center (KCTC) training facility and utilized scientific military training equipment that included MILES and the main exercise control system. The training audience freely engaged an OPFOR who is an expert at tactics and weapon systems. It provides a statistical analysis of data in regards to state-of-the-art military training because the scientific battle training system saves and utilizes all training zone data for analysis and after action review as well as offers training control during the training period. The methodologies used the Cox PH modeling (which does not require parametric distribution assumptions) and decision tree modeling for survival data such as CART, GUIDE, and CTREE for richer and easier interpretation. The variables that violate the PH assumption were stratified and analyzed. Since the Cox PH model result was not easy to interpret the period of service, additional interpretation was attempted through univariate local regression. CART, GUIDE, and CTREE formed different tree models which allow for various interpretations.