• Title/Summary/Keyword: Weapon Control System

Search Result 148, Processing Time 0.026 seconds

A Study on the Gun-Oriented Anti Air Warfare Capability of the Patrol Killer Combat System (고속정 전투체계의 함포 중심 대공전 성능 분석)

  • Hwang, Kun-Chul
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.10 no.4
    • /
    • pp.62-72
    • /
    • 2007
  • The Gun-Oreinted Anti-Air Warfare(GOAAW) which is still one of the important weapon systems of the vessel like the patrol killer to confront air threats comprises the components of the combat system - Command & Control(C2), Ballistic Calculation Unit, Sensors and Guns. In this paper, the GOAAW process of the patrol killer combat system is analyzed with probability and simulated to evaluate the effectiveness and capability of the GOAAW. As a result of the simulation, the performance measures of the GOAAW are discussed in the functional and operational aspects of the combat system.

A Design of Management and Verification Tool of Component and A Development of SAM Simulator based on Dynamic Reconfiguration Architecture (컴포넌트 관리 및 검증도구 설계와 동적 재구성 아키텍처 기반 SAM 시뮬레이터 개발)

  • Suk, Jeebeom;Lee, Jaeoh;Lee, Jaejin;Seo, Yoonho
    • Journal of the Korea Society for Simulation
    • /
    • v.22 no.2
    • /
    • pp.1-10
    • /
    • 2013
  • Modeling and simulation techniques construct experimental environment considering battlefields and are able to analyze performance of components of weapon system that closely resemble reality. However, developed model has low scalability and not cared reusability because it has been used only in a limited range of domain. In this paper, we develop a verification tool to verify reusability of developed component for dynamic reconfiguration and to judge scalability of it and a management tool to control data of it effectively. In addition, dynamic reconfiguration architecture of guided weapon systems designed in the previous study has been applied to SAM(Surface to Air Missile) System Simulator, and we study effectiveness of the developed component. Thus the user can configure various guided weapon systems through simulation application of dynamic reconfiguration architecture of component.

On the Development of the Generic CFCS for Engineering Level Simulation of the Surface Ship (공학수준 수상함 지휘무장통제체계 범용 모델 개발방안 연구)

  • Jung, Young-Ran;Han, Woong-Gie;Kim, Cheol-Ho;Kim, Jae-Ick
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.3
    • /
    • pp.380-387
    • /
    • 2011
  • In this paper, we considered the authoritative representation of Command and Fire Control System(CFCS) for the surface ship that was the engineering level model to develop system specifications and to analyze operational concepts on the concept design phase and to analyze military requirements, effectiveness and performance for the system. The engineering level model of CFCS can be used in simulation independently of the surface ship's type, and also it takes reuse, interoperability, and extension into consideration. The detailed sub-models, internal and external data interface, data flow among each sub-model, sensor and weapon models about the engineering level model of CFCS was defined. It was verified via engineering level simulations according to the V&V process.

A Study on Improvement of Aircraft Handling Quality for Asymmetric Loading Configuration (비대칭 무장 형상의 조종성 개선에 관한 연구)

  • Kim, Chong-Sup;Bae, Myung-Whan;Hwang, Byung-Moon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.2
    • /
    • pp.106-112
    • /
    • 2005
  • Modern versions of supersonic jet fighter aircraft have several different weapon loading configuration to support air-to-air combat and air-to-ground delivery of weapon modes. These various aircraft loading conditions could result in asymmetric configurations to the aircraft once delivered. These asymmetric configurations could result in decreased handling qualities for the pilot maneuvering, stability, control issues and aerodynamic performance of the aircraft. In order to eliminate or decrease these adverse impacts on the pilot's ability, development of T-50 flight control law attempts to control the aircraft in both longitudinal and lateral-directional axes. Especially, the design of the lateral-directional roll axis control laws, utilizing a simple roll rate feedback structure and gains such as F-16, is developed for the T-50 aircraft to meet the aircraft's design requirements. Consequently, it is found that the improved control law decreases the roll-off phenomenon in lateral axes during pitch maneuver.

Development of UFC/DC Data Communication method for XKO-1 using RS-422 Bus (RS422 버스를 이용한 저속통제기 UFC/DC 데이터 통신 기법 개발)

  • 양승열;김영택
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.5 no.2
    • /
    • pp.123-131
    • /
    • 2002
  • ASC(Avionics System Computer) was developed to control weapon delivery and navigation sensors, and to perform man-machine interface with pilots for XKO-1 aircraft. The data communications between ASC and UFC(Up Front Controller), DC(Data Concentrator) were implemented by RS422 serial data bus. Also, SCIL(Standard Computer Interface Library) was designed to facilitate control and management of the computer hardware resources and is embedded in the ASC. These structures have a merit of noise immunity and a reduction of wire harness for signal lines, and enable OFP(Operational Flight Program) programmers to use the SCIL easily without knowing hardware details. Manufactured system was on installed on XKO-1, and peformed for BIT(Built In Test) and interface test with UFC and DC. The test results show that it meets the system requirements.

Development of Operational Flight Program for Avionic System Computer (항공전자시스템컴퓨터 탑재소프트웨어 개발)

  • Kim, Young-Il;Kim, Sang-Hwan;Lim, Heung-Sik;Lee, Sung-Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.9
    • /
    • pp.104-112
    • /
    • 2005
  • This paper presents the technique to develop an operational flight program(OFP) of avionic system computer(ASC) which integrates the avionics control, navigation and fire control and provides informations for flight, navigation and weapon aiming missions. For the development of the OFP of ASC, two i960KB chips are used as central processing units board and standard computer interface library(SCIL) which is built in house is used. The Irvine compiler corporation(ICC) integrated development environment(IDE) and the programming language Ada95 are used for the OFP development. We designed the OFP to a computer software configuration item(CSCI) which consists of to three parts for independency of software modules. The OFP has been verified through a series of flight tests. The relevant tests also have been rigorously conducted on the OFP such as software integrated test, and ground functional test.

Naval Gun Fire Control System Simulation for Verification Depending on Development Phase (함포 사격통제시스템 검증을 위한 시뮬레이션 환경 구축 및 개발진행단계에 따른 적용 방안 연구)

  • Kim, Eui-Jin
    • Journal of the Korea Society for Simulation
    • /
    • v.20 no.2
    • /
    • pp.41-48
    • /
    • 2011
  • Naval Gun FCS(Fire Control System) is the most fundamental weapon system in Naval Combat System. Simulationbased verification of FCS is mandatory before sea trial since ballistic solution needs complicated process and uses almost all information produced by own ship sensors. The FCS simulation method is proposed for verification of naval gun FCS and applicable to the FCS design depending on combat system development phase based on available data in each design phase. Verified FCS through proposed simulation method is adapted in real naval combat system and the performance has been proven by sea trial.

An Effective ESICD Verification Strategy: A case study of Military Satellite Communications System II

  • Lee, Kee-Sung;Choi, Jun-Ho;Shin, Jeong-Jin;Yoon, Hye-Jin;Kim, Seung-Ho
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.9
    • /
    • pp.105-114
    • /
    • 2021
  • ESICD(Electrical Signal Interface Control Document) refers to a document that describes protocols and data for communication between components consist of a system. Each component developer gathers at a specific place to conduct an integrated test for ESICD verification. In this case, it often happens that the integration test is delayed due to a simple mistake of software developers. There are two reasons for this situation: First, software developers do not perform sufficient verification because it is difficult to configure the system environment in a Lab, and second, they do not immediately find the cause of errors occurred during integration tests. Therefore, in this paper, we propose a strategy to effectively perform ESICD verification, which takes a lot of time between the production and implementation stage of the weapon system development stage and the system integration test stage.

[ $H_{\infty}$ ] Optimal Control for Single-Rod Hydraulic Servo-System with DSP (DSP를 이용한 편로드 유압서보시스템의 $H_{\infty}$ 최적제어)

  • Jung, Gyu-Hong
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.515-520
    • /
    • 2001
  • Due to the high power to weight ratio and fast response under heavy load, the hydraulic systems are still applied to the development of many industrial facilities such as heavy duty construction vehicles, aerospace/military weapon actuating systems and motion simulators. Unlike the other actuators, single-rod hydraulic cylinder exhibits a lot different dynamic characteristics between the extending and retracting stroke because of the difference in pressure acting areas. In this research, in order to overcome this nonlinear feature, $H_{\infty}$ optimal controller was designed and implemented with DSP board that was specifically developed for the experiment. From the experimental result, we could confirm that the overall performance of single-rod hydraulic servo system is similar with the results as we expected in the design stage.

  • PDF

A Study on Real Time Asynchronous Data Duplication Method for the Combat System (전투체계 시스템을 위한 실시간 환경에서의 비동기 이중화 기법 연구)

  • Lee, Jae-Sung;Ryu, Jon-Ha
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.10 no.2
    • /
    • pp.61-68
    • /
    • 2007
  • In a naval combat system, the information processing node is a key functional equipment and performs major combat management functions including control sensor and weapon systems. Therefore, a failure of one of the node causes fatal impacts on overall combat system capability. There were many methodologies to enhance system availability by reducing the impact of system failure like a fault tolerant method. This paper proposes a fault tolerant mechanism for information processing node using a replication algorithm with hardware duplication. The mechanism is designed as a generic algorithm and does not require any special hardware. Therefore all applications in combat system can use this functionality. The asynchronous characteristic of this mechanism provides the capability to adapt this algorithm to the module which has low performance hardware.