• Title/Summary/Keyword: Weak rock

Search Result 210, Processing Time 0.022 seconds

A Study on a Method of Improvement from Domestic NATM Case (국내 NATM시공 사고사례에 의한 개선방안 연구)

  • 김무일;이상웅
    • Journal of the Korean Society of Safety
    • /
    • v.9 no.4
    • /
    • pp.92-102
    • /
    • 1994
  • NATM as method of tunneling has been applied to construction of domestic subway, roads, rail way, water way etc. Accordingly we have NATM's many drafts and constructional results, but many problems and accidents have occurred under construction of tunnel using NATM for shortage of technical data, poorness of constructional improvement, systemic inconsistency etc. Especially, everyone was shocked at Gupo's train wrecking accident lately. The purpose of this thesis is presentation of means for settling technical problems, by looking into Gupo's train wrecking accident and home records that applying NATM in tunneling failed, to minimize future safety accidents we find that the general problems of home fifteen sites haying occured accidents is badly geological survey, nonconfirmation of base rock's state, formal measuring management, shortage of specialists, systemical discrepancy and that disregarding NATM's rules makes general problems. The results of this study are summarised as follows ; 1. We advise repletion of design standards to practice crosshole test for confirming connected rock base on vertical section of tunnel. 2. We advise to practice pre-boring and pre-grouting for a weak layer difficult in applying NATM. 3. We advise systemic improvements that field servicer can construct tunnel of his own free will considering base rock's state at tunnel. 4. We advise that specialist, who can make a conduct and supervise above mentioned items as well as measuring managements, should be posted at field.

  • PDF

A case study additional slope failure caused by a bench failure (절토사면 소단부의 취약성으로 인한 붕괴 사례 연구)

  • Kim, Yong-Soo;Nah, Kwang-Hee;Shin, Chang-Gun;Shim, Jeong-Hoon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.777-780
    • /
    • 2005
  • The bench of cut-slope is necessary to stabilizing. But it is possible to be a weak zone in slope. When a small scale failure is occurred in a bench, it influence a large scale failure of slope. So when it is found out any unstable factor, weathering of rock, a direction of joint in a bench, if the bench is reinforced suitably, the holly failure is prevented in cut-slope

  • PDF

Applicability of exponential stress-strain models for carbonate rocks

  • Palchik, Vyacheslav
    • Geomechanics and Engineering
    • /
    • v.15 no.3
    • /
    • pp.919-925
    • /
    • 2018
  • Stress-strain responses of weak-to-strong carbonate rocks used for tunnel construction were studied. The analysis of applicability of exponential stress-strain models based on Haldane's distribution function is presented. It is revealed that these exponential equations presented in transformed forms allow us to predict stress-strain relationships over the whole pre-failure strain range without mechanical testing of rock samples under compression using a press machine and to avoid measurements of axial failure strains for which relatively large values of compressive stress are required. In this study, only one point measurement (small strain at small stress) using indentation test and uniaxial compressive strength determined by a standard Schmidt hammer are considered as input parameters to predict stress-strain response from zero strain/zero stress up to failure. Observations show good predictive capabilities of transformed stress-stress models for weak-to-strong (${\sigma}_c$ <100 MPa) heterogeneous carbonate rocks exhibiting small (< 0.5 %), intermediate (< 1 %) and large (> 1 %) axial strains.

On the Cautious blasting pattern of Weak zone of NAMSAN NO. twin Tunneling (남산1호터널 쌍굴 굴진공사 정밀발파 작업에 대한 안전도검토)

  • Huh, Ginn
    • Explosives and Blasting
    • /
    • v.8 no.4
    • /
    • pp.3-22
    • /
    • 1990
  • The $\varphi{4.5}$ meters pilot tunneling work is almost done to the $\varphi{11.3}$ meters twin tunnel of NAM SAN No1. The south side pit of 400 meters is weak zone of Rock status, so client request us to allow the cautious blasting pattern for drilling on the condition of 0.2 kine vibration allowance limited for the safety of side running tunnel. The pattern of cautious blasting carried out by 6 time divided fiving on the round drilling depth of 1.20 meters(1.10) and also applied control blasting method with line drilling due to the reduction of vibration.

  • PDF

A Method of SMART Anchor for a Weaked Ground Condition (연약지반용 스마트 앵커 공법)

  • Park, Dae-Woong;Jeong, Jong-Ki;Kim, Jeong-Ryeol
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.1334-1337
    • /
    • 2009
  • A SMART anchor is a kind of friction mount anchor, the load is diffused and applied to the various parts of the distributed bond length, having less impact on the grout strength, and being able to secure necessary anchoring force in relatively soft grounds. Smart anchor can have strong loads in soft and weak grounds as in rock beds.

  • PDF

Assessment of Rock Mass Strength Using Three-Dimensional Numerical Analysis with the Distinct Element Method (개별요소법 기반의 삼차원 수치해석을 통한 절리성 암반의 강도특성 평가)

  • Junbong Bae;Jeong-Gi Um;Hoyoung Jeong
    • The Journal of Engineering Geology
    • /
    • v.33 no.4
    • /
    • pp.573-586
    • /
    • 2023
  • Joints or weak planes can induce anisotropy in the strength and deformability of fractured rock masses. Comprehending this anisotropic behavior is crucial to engineering geology. This study used plaster as a friction material to mold specimens with a single joint. The strength and deformability of the specimens were measured in true triaxial compression tests. The measured results were compared with three-dimensional numerical analysis based on the distinct element method, conducted under identical conditions, to assess the reliability of the modeled values. The numerical results highlight that the principal stress conditions in the field, in conjunction with joint orientations, are crucial factors to the study of the strength and deformability of fractured rock masses. The strength of a transversely isotropic rock mass derived numerically considering changes in the dip angle of the joint notably increases as the intermediate principal stress increases. This increment varies depending on the dip of the joint. Moreover, the interplay between the dip direction of the joint and the two horizontal principal stress directions dictates the strength of the transversely isotropic rock mass. For a rock mass with two joint sets, the set with the steeper dip angle governs the overall strength. If a rock bridge effect occurs owing to the limited continuity of one of the joint sets, the orientation of the set with longer continuity dominates the strength of the entire rock mass. Although conventional three-dimensional failure criteria for fractured rock masses have limited applicability in the field, supplementing them with numerical analysis proves highly beneficial.

Environmental Characteristics of Natural Radionuclides in Groundwaters in Volcanic Rock Areas: Korea (국내 화산암 지역 지하수 중 자연방사성 물질에 대한 환경 특성)

  • Jeong, Do Hwan;Kim, Moon Su;Ju, Byoung Kyu;Hong, Jung Ki;Kim, Dong Su;Kim, Hyun Koo;Kim, Hye Jin;Park, Sun Hwa;Han, Jin Seok;Kim, Tae Seung
    • Journal of Soil and Groundwater Environment
    • /
    • v.18 no.1
    • /
    • pp.36-45
    • /
    • 2013
  • We analyzed natural radionuclides in 80 wells in volcanic rock areas and investigated environmental characteristics. Uranium and radon concentrations ranged from ND to $9.70{\mu}g/L$ (median value: 0.21) ${\mu}g/L$, 38~29,222 pCi/L (median value: 579), respectively. In case of gross-${\alpha}$, 26 samples exceeded MDA (minimum detectable activity, < 0.9 pCi/L) value and the activity values ranged from 1.05 to 8.06 pCi/L. The radionuclides concentrations did not exceed USEPA MCL (maximum contaminant level) value of Uranium ($30{\mu}g/L$) and gross-${\alpha}$ (15 pCi/L). But Rn concentrations in 4 samples exceeded USEPA AMCL (Alternative maximum contaminant level, 4,000 pci/L) and one of them showed a significantly higher value (29,222 pCi/L) than the others. The levels of uranium concentrations in volcanic rock aquifer regions were detected in order of andesite, miscellaneous volcanic rocks, rhyolite, basalt aquifer regions. Radon, however, was detected in order of miscellaneous volcanic rocks, rhyolite, andesite, basalt aquifer regions. The correlation coefficient between uranium and radon was r = 0.45, but we found that correlations of radionuclides with in-situ data or major ions were weak or no significant. The correlation coefficient between the depth of wells and uranium concentrations was a slightly higher than that of depth of wells and radons. Radionuclide concentrations in volcanic rock aquifers showed lower levels than those of other rock aquifers such as granite, metamorphic rock aquifers, etc. This result may imply difference of host rock's bearing-radioactive-mineral contents among rock types of aquifers.

Comparison of Seismic Velocity and Rock Mass Rating from in situ Measurement (현장 실험을 통한 암반 탄성파 속도와 암반평가 인자 비교)

  • Lee, Kang Nyeong;Park, Yeon Jun;Kim, Ki Seog
    • Tunnel and Underground Space
    • /
    • v.28 no.3
    • /
    • pp.232-246
    • /
    • 2018
  • In this study, the relationship between in situ seismic wave velocities and RMR (rock mass rating) was investigated in a test bed for the examination of the basis of rock classification (RMR) based on seismic wave velocity. The seismic wave velocity showed a monotonous increase with depth. It was also found that there was no systematic correlation between the seismic wave velocity (Vp) and other parameters (RQD, joint spacing, UCS, rock core Vp, and RMR) collected at the same depth of the same borehole. However, correlative relation was observed among RMR, RQD, and joint spacing. On the other hand, when all the data in the borehole (three holes) are examined without considering the depth, Vp still shows no correlation with RMR parameters (e.g., correlative coefficient for uniaxial compressive strength and joint spacing are 0.039 and 0.091, respectively), but Vp shows weak correlative relation with RMR and RQD (correlative coefficient for RQD and RMR are 0.193 and 0.211, respectively). Thus, it is found that it is difficult to deduce physical properties of rock mass directly from seismic wave velocities, but the seismic wave velocity can be used as a tool to approximate rock mass properties because of weaker correlation between Vp and RMR with RQD. In addition, the velocity value of for soft and moderate rocks suggested by widely used construction standards is slower than that of the observed velocity, implying that the standards need to be examined and revised.

The Prediction of Ground Condition ahead of the Tunnel Face using 3-Dimensional Numerical Analysis (3차원 수치해석을 이용한 터널막장 전방 지반 상태의 예측)

  • You Kwang-Ho;Song Han-Chan;Kim Ki-Sun;Lee Dae-Hyuck;Park Yeon-Jun
    • Tunnel and Underground Space
    • /
    • v.14 no.6 s.53
    • /
    • pp.440-449
    • /
    • 2004
  • Rock mass includes natural discontinuities such as joints and faults during its formation. Discontinuities are also referred as planes of weakness because of their weak mechanical characteristics. In the design of underground structures, it is necessary to consider the properties of discontinuities to insure the stability. During the excavation of a tunnel, these discontinuities have to be identified as early as possible so that proper change in excavation method or support design can be made accordingly. The excavation of the tunnel in a stable rock mass causes a 3-dimensional arching effect around the excavation face. It was revealed by previous studies that the existence of a weak zone or a fault zone ahead of tunnel foe induces a typical displacement tendency of convergence. For better understanding of the meaning of influence/trend lines of various displacement components, three-dimensional numerical analyses were conducted while varying deformation moduli, thicknesses and orientations of discontinuities. Numerical results showed that the changes in influence/trend lines of various displacement components were very similar to those by measurements. The discrepancies from the expected values were dependent on the physical properties, thicknesses and orientations of discontinuities.

Petrological Characteristics and Deterioration Aspect of the Pohang Chilpori and Shinheungri Petroglyphs (포항 칠포리 I지구와 신흥리 암각화의 암석학적 특징과 훼손양상 분석)

  • Lee, Sang-Hun;Choi, Gi-Ju
    • Journal of Conservation Science
    • /
    • v.25 no.4
    • /
    • pp.347-361
    • /
    • 2009
  • The Pohang Chilpori is the area with abundant petroglyphs in Korea. The form of the shield, female sex organs, and yut board on the outcrops or float rocks which are composed of the rhyolitic rock are engraved on Chilpori and Shinheungri Petroglyphs. The rhyolitic rock is composed of the phenocryst and groundmass with quartz and feldspar. The rock surface shows mostly yellowish brown color and the rock surface is very irregular by serious weathering, and illite and kaolinite, a kind of the clay minerals, are produced. Deterioration aspects are mainly of surface exfoliation, grain peel-off, damages, scribbling. Chilpori Petroglyph (1) plane has been eroded by running water, in (2) plane has been abrased is on the rock surface, in (3) plane shows surface exfoliation and the various part of the rock surface in plane (4) has become the soil. The corrasion and black phenomenon of the Shinheungri Petroglyph (1) plane was formed by running water, and surface exfoliation and scribbling in plane (2) is serious. Deterioration factors are geomorphologic states, plants, rock of weak to weathering, and artificial influence such as a scribbling and a forest fire. For conservation of the these petroglyphs, study for rock surface conservation and the arrangement of around petroglyphs and construction of water wall are necessary.

  • PDF