PRAIRIE(Propeller Air Induced Emission) system is a kind of underwater radiated noise suppression systems to reduce the probability of the identification or classification of our warship's acoustic signature by an enemy ship. It is effective in case of strong cavitation events. This is because air bubbles emitted from the PRAIRIE system mitigate drastic collapses of the cavity bubbles that can generate an intense shock wave. However, when the PRAIRIE system is operated in a non or weak cavitation condition, it might increase the total level of underwater radiated noise and induce the acoustic signatures. Therefore, this paper presents the trial results on ventilation control of PRAIRIE to find a more efficient operation depend on the cavitation condition. Then, we show a variation of the amplitude modulation characteristics according to ventilation control.
This paper proposes a modified error function to improve the error back-propagation (EBP) algorithm for multi-Layer perceptrons (MLPs) which suffers from slow learning speed. It can also suppress over-specialization for training patterns that occurs in an algorithm based on a cross-entropy cost function which markedly reduces learning time. In the similar way as the cross-entropy function, our new function accelerates the learning speed of the EBP algorithm by allowing the output node of the MLP to generate a strong error signal when the output node is far from the desired value. Moreover, it prevents the overspecialization of learning for training patterns by letting the output node, whose value is close to the desired value, generate a weak error signal. In a simulation study to classify handwritten digits in the CEDAR [1] database, the proposed method attained 100% correct classification for the training patterns after only 50 sweeps of learning, while the original EBP attained only 98.8% after 500 sweeps. Also, our method shows mean-squared error of 0.627 for the test patterns, which is superior to the error 0.667 in the cross-entropy method. These results demonstrate that our new method excels others in learning speed as well as in generalization.
Asthma deaths in Seoul peaked on the third, fifth, and second days after the PM concentration exceeded the daily average concentration standard. We classified the synoptic meteorological conditions, based on the days involving such cases, into three categories. Type 1 included the meteorological condition likely to cause high air pollution concentrations in the leeward region, the dominant wind direction of which is the northwest. Type 2 included the meteorological condition likely to cause high air pollution concentrations due to the weak wind velocity under stable atmospheric conditions. Type 3 was when the passage low atmospheric pressure and the expansion of high atmospheric pressure occurred at the rear, indicating a meteorological condition likely to cause high air pollution, in certain regions. Type 1 occurred 11 times, with high concentrations of over $100{\mu}g/m^3$ being observed in the southeastern part of Seoul. Type 2 occurred 24 times, often accompanied by a PM concentration of $100{\sim}400{\mu}g/m^3$. Type 3 occurred 11 times, and was accompanied by several days of yellow dust that accounted for the highest concentrations.
There are two methods to make a distinction of deterioration of high-speed railway track. One is that an administrator checks for each attribute value of track induction data represented in graph and determines whether maintenance is needed or not. The other is that an administrator checks for monthly trend of attribute value of the corresponding section and determines whether maintenance is needed or not. But these methods have a weak point that it takes longer times to make decisions as the amount of track induction data increases. As a field of artificial intelligence, the method that a computer makes a distinction of deterioration of high-speed railway track automatically is based on machine learning. Types of machine learning algorism are classified into four type: supervised learning, unsupervised learning, semi-supervised learning, and reinforcement learning. This research uses supervised learning that analogizes a separating function form training data. The method suggested in this research uses SVM classifier which is a main type of supervised learning and shows higher efficiency binary classification problem. and it grasps the difference between two groups of data and makes a distinction of deterioration of high-speed railway track.
International Journal of Fuzzy Logic and Intelligent Systems
/
제13권3호
/
pp.178-185
/
2013
As computer technology continues to develop, computer networks are now widely used. As a result, there are many new intrusion types appearing and information security is becoming increasingly important. Although there are many kinds of intrusion detection systems deployed to protect our modern networks, we are constantly hearing reports of hackers causing major disruptions. Since existing technologies all have some disadvantages, we utilize algorithms, such as the fuzzy C-means (FCM) and the support vector machine (SVM) algorithms to improve these technologies. Using these two algorithms alone has some disadvantages leading to a low classification accuracy rate. In the case of FCM, self-adaptability is weak, and the algorithm is sensitive to the initial value, vulnerable to the impact of noise and isolated points, and can easily converge to local extrema among other defects. These weaknesses may yield an unsatisfactory detection result with a low detection rate. We use a genetic algorithm (GA) to help resolve these problems. Our experimental results show that the combined GA and FCM algorithm's accuracy rate is approximately 30% higher than that of the standard FCM thereby demonstrating that our approach is substantially more effective.
Although there have been lack of studies using X-band SAR data particularly for forestry application as compared to C-, and L-band SAR data, it has a potential to distinguish tree species because most signals are backscattered on the top of canopy. This study aimed to compare signal characteristics of multi-band SAR data including X-band for classifying tree species. The data used for the study are SIR-C/X-SAR data (X-, C-, L-band) obtained on Oct. 3, 1994 over the forest area near Seoul, S. Korea. Thirty ground sample plots were collected per each tree species. Initial comparison of backscattering coefficients among three SAR bands shows that X-band data showed better separation of tree species than C- and L-band SAR data irrespective of polarization. The weak penetrating in canopy layer might be possible source of information for X-band data to be useful for the classification of forest species and cover type mapping.
This paper primarily aims to analyze the growth rate differentials of the economic activities in chung-Nam area. The research has been undertaken to find out the potentials of the economic activities and economic bases in the area. To analyze the economic potentials of the industries, the study employed the economic Growth Rate Differential Analysis by Henderson which is revised form of Shift-Share Analysis Methods. The research employed the employment data according to the standardized two-digit-classification-system during the period of 10 years from 1981 through 1991. The Growth Rate Differential Analysis calculates Total Growth Differentials which are dicomposed into two parts: Weight Part and Rate Part. Total Growth Differential can be calculated as the difference between national growth rate and regional growth rate by industry. The foundings are as follows: First, the economic bases of Chung-Nam area were found to be very weak, largely depending on primary industries such as agriculture and fisheries. Second, there was a great decline in urban industries in Tae Joeon, Cheon An and other cities over period of 1971-1981. It is strongly recommended that the planned items and products of each industrial complex must be reorgnized in a fashion to match those with high competitive power found in this research.
본 연구는 새롭게 개발된 제초제인 methiozolin의 인체 안전성을 평가하기 위해 급성독성시험을 수행하였다. 랫드를 이용한 급성 독성 시험에서 2,000 mg/kg의 용량을 고용량으로 하여 단계적으로 투여한 결과 methiozolin의 $LD_{50}$은 2,000 mg/kg bw 이상이었다. 급성 경피독성시험결과 시험물질을 고용량 4,000 mg/kg을 투여한 결과 별다른 사망동물이 발생하지 않아 시험물질의 $LD_{50}$이 4,000 mg/kg bw 이상으로 나타났다. 피부자극성 시험결과 시험물질의 약한 자극성이 나타났으며, 안점막 자극성 시험결과 약한 자극성이 있었다. 이상의 연구 결과 경구 독성의 경우 methozolin은 GHS 카테고리 IV에 해당하는 물질로 판단된다. 이러한 결과를 바탕으로 methiozolin은 안전한 제초제로서 추후 만성 독성 연구가 필요하다고 판단된다.
Neighboring construction becomes mainstream of Ground excavation in downtown area. This causes the displacement, deformation, stress condition, etc of the ground surroundings. Therefore Neighboring construction have an effect on Neighboring structure. All these years a lot of Neighboring construction carried out, and the accumulation of technology also get accomplished. But earth retaining structure collapse happens yet. Types of earth retaining structure collapse are 12. 1. Failure of anchor or strut system, 2. Insufficiency of penetration, 3. H-pile Failure on excessive bending moment, 4. Slope sliding failure, 5. Excessive settlement of the back, 6. Deflection of H-pile, 7. Joint failure of coupled H-pile, 8. Rock failure when H-pile penetration is rock mass, 9. Plane arrangement of support systems are mechanically weak, 10. Boiling, 11. Heaving, 12. Over excavation. But field collapses are difficult for classification according to the type, because collapse process are complex with various types. When we consider the 12 collapse field, insufficient recognition of ground condition is 4 case. Thorough construction management prevents from fault construction. For limitations of soil survey, It is difficult to estimate ground condition exactly. Therefore, it should estimate the safety of earth retaining system, plan for necessary reinforcement, according to measurement and observation continuously.
Objectives : This study was performed to investigate the relationship between Sasang Constitution and length of chest and abdomen region. Methods : Forty eight participants were enrolled. Weight, height, and lengths from CV22 to CV16, from CV16 to CV8, and from CV8 to CV2 were measured. Ratios of last three lengths to total CV22 to CV2 were calculated respectively. On the other hand, Sasang Constitution was analyzed with QSCCII(Questionnaire of Sasang Constitutional Classification II). The analysis of relationship between the measurements and Sasang Constitution was carried out with SPSS to compare the mean values according to Sasang Constitution. Results : All the mean values were not significantly different depending on the Sasang Constitution, except the ratio of the length from CV16 to CV8 to the length from CV22 to CV2, only in female participants. The ratio was higher in the female Soeumin participants than any other constitutional groups. Conclusions : This result showed that Soeumin could be assumed that they might have weak digestion abilities.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.