• 제목/요약/키워드: Wavy flow

검색결과 107건 처리시간 0.025초

직접수치모사를 통한 Wavy Channel 내의 난류 유동 구조의 연구 (The study of turbulent flow structures in a wavy channel using direct numerical simulation)

  • 이대성;하만영;윤현식;전호환;전충환
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.1807-1812
    • /
    • 2004
  • Sinusoidal wavy channel is one of the most commonly used devices in the industry for achieving mixing and heat transfer. Here we report on results obtained from the DNS of flow inside the wavy channel performed using the finite volume technique. As a primary stage to obtain the optimal design for heat transfer and mixing, this study observed the basic flow structures in a wavy channel. The mass flow rate is kept constant with friction Reynolds number of $Re_{\tau}$ = 140 . Time- and space-averaged and instantaneous flow fields are illustrated to observe the flow structures. Although the direct comparison of results between turbulent wavy and flat channel is somehow difficult due to the different flow phenomena derived from different configuration, here the mean streamwise velocity and RMS of velocities at same $Re_{\tau}$ of two different channels are compared. The basic difference between wavy and flat channel flow is the existence of small scale wall vortices along the walls in a wavy channel. These vortices make flow more complex, which will accompany the increase of heat transfer, pressure drop and drag.

  • PDF

유로내에서 응축을 수반하는 초음속 유동의 미소진폭 파형벽에 의한 Prandtl-Meyer 팽창 (Prandtl-Meyer Expansion Through a Small Wavy Wall of Supersonic Flow with Condensation in a Channel)

  • 권순범;안형준;선우은
    • 대한기계학회논문집
    • /
    • 제18권6호
    • /
    • pp.1582-1589
    • /
    • 1994
  • The characteristics Prandt1-Meyer expansion of supersonic flow with condensation through a wavy wall in a channel are investigated by experiment and numerical direct marching method of characteristics. In the present study, for the case of moist air flow in the type of indraft supersonic wind tunnel, the dependency of location of formation and reflection of the oblique shock wave generated by the wavy wall and the distribution of flow properties, on the specific humidity and temperature at the entrance of wavy wall and the attack angle of the wavy wall to the main stream is clarified by schlieren photograph, distribution of static pressure and Mach number, and plots of numerical results. Also, we confirm that the wavy wall plays an important key role in the formation of oblique shock wave, and that the effect of condensation on the flow field appears apparently.

Supersonic Moist Air Flow with Condensation in a Wavy Wall Channel

  • Ahn, Hyung-Joon;Kwon, Soon-Bum
    • Journal of Mechanical Science and Technology
    • /
    • 제15권4호
    • /
    • pp.492-499
    • /
    • 2001
  • The characteristics of Prand시-Meyer expansion of supersonic flow with condensation along a wavy wall in a channel are investigated by means of experiments and numerical analyses. Experiments are carried out for the case of moist air flow in an intermittent indraft supersonic wind tunnel. The flow fields are visualized by a Schlieren system and the distributions of static pressure along the upper wavy wall are measured by a scanning valve system with pressure transducers. In numerical analyses, the distributions of streamlines, Mach lines, iso-pressure lines, and iso-mass fractions of liquid are obtained by the two-dimensional direct marching method of characteristics. The effects of stagnation temperature, absolute humidity, and attack angle of the upper wavy wall on the generation and the locations of generation and reflection of an oblique shock wave are clarified. Futhermore, it is confirmed that the wavy wall plays an important role in the generation of an oblique shock wave and that the effect of condensation on the flow fields is apparent.

  • PDF

Reynolds 수에 따른 꺾어진 덕트에서 열/물질전달 특성 고찰 (Effects of Reynolds Number on Flow and Heat/Mass Characteristics Inside the Wavy Duct)

  • 장인혁;황상동;조형희
    • 설비공학논문집
    • /
    • 제15권10호
    • /
    • pp.809-820
    • /
    • 2003
  • The present study investigates effects of flow velocity on the convective heat/mass transfer characteristics in wavy ducts of a primary surface heat exchanger application. Local heat/mass transfer coefficients on the wavy duct sidewall are determined by using a naphthalene sublimation technique. The flow visualization technique is used to understand the overall flow structures inside the duct. The aspect ratio and corrugation angle of the wavy duct is fixed at 7.3 and 145$^{\circ}$ respectively, and the Reynolds numbers, based on the duct hydraulic diameter, vary from 100 to 5,000. The results show that there exist complex secondary flows and transfer processes resulting in non-uniform distributions of the heat/mass transfer coefficients on the duct side walls. At low Re (Re<1000), relatively high heat/mass transfer regions like cell shape appear on both pressure and suction side wall due to the secondary vortex flows called Taylor-Gortler vortices perpendicular to the main flow direction. However, at high Re (Re>1000), these secondary flow cells disappear and boundary layer type flow characteristics are observed on pressure side wall and high heat/mass transfer region by the flow reattachment appears on the suction side wall. The average heat/mass transfer coefficients are higher than those of the smooth circular duct due to the secondary flows inside wavy duct. And also friction factors are about two times greater than those of the smooth circular duct.

An Experimental Study of Developing and Fully Developed Flows in a Wavy Channel by PIV

  • Kim, Sung-Kyun
    • Journal of Mechanical Science and Technology
    • /
    • 제15권12호
    • /
    • pp.1853-1859
    • /
    • 2001
  • An experimental study is presented for a flow field in a two dimensional wavy channels by PIV. This flow has two major applications such as a blood flow simulation and the enhancement of heat transfer in a heat exchanger. While the numerical flow visualization results have been limited to the fully developed cases, existing experimental results of this flow were simple qualitative ones by smoke or dye streak test. Therefore, the main purpose of this study is to produce quantitative flow data for fully developed and developing flow regimes by the Correlation Based Correction PIV (CBC PIV) and to conjecture the analogy between flow characteristics and heat transfer enhancement with low pumping power. Another purpose of this paper is to examine the onset position of the transition and the global mixing, which results in transfer enhancement. PIV results on the Fully developed and developing flow in a wavy channel at Re=500, 1000 and 2000 are obtained. for the case Reynolds Number equals 500, the PIV results are compared with the finite difference numerical solution.

  • PDF

Wavy Taylor-Couette 유동에 대한 전산해석 (I) -축방향 유동이 없는 경우- (Numerical Study of Wavy Taylor-Couette Flow(I) -Without an Axial Flow-)

  • 황종연;양경수
    • 대한기계학회논문집B
    • /
    • 제25권5호
    • /
    • pp.697-704
    • /
    • 2001
  • The flow between two concentric cylinders, with the inner one rotating, is studied using numerical simulation. This study considers the identical flow geometry as in the experiments of Wereley and Lueptow[J. Fluid Mech., 364, 1998]. They carried out experiment using PIV to measure the velocity fields in a meridional plane of the annulus in detail. When Taylor number increases over the critical one, the flow instability caused by curved streamlines of the tangential flow induces Taylor vortices in the flow direction. As Taylor number further increases over another critical one, the steady Taylor vortices become unsteady and non-axisymmetrically wavy. The velocity vector fields obtained also show the same flow features found in the experiments of Wereley and Lueptow.

Wavy 형상 적용에 따른 대 각도에서의 러더 성능에 대한 수치해석 연구 (A Numerical Performance Study on Rudder with Wavy Configuration at High Angles of Attack)

  • 태현준;신용진;김범준;김문찬
    • 대한조선학회논문집
    • /
    • 제54권1호
    • /
    • pp.18-25
    • /
    • 2017
  • This study deals with numerically comparing performance according to rudder shape called 'Twisted rudder and Wavy twisted rudder'. In comparison with conventional rudder, rudder with wavy shape has showed a better performance at high angles of attack($30^{\circ}{\sim}40^{\circ}$) due to delaying stall. But most of study concerned with wavy shape had been performed in uniform flow condition. In order to identify the characteristics behind a rotating propeller, the present study numerically carries out an analysis of resistance and self-propulsion for KCS with twisted rudder and wavy twisted rudder. The turbulence closure model, Realizable $k-{\epsilon}$, is employed to simulate three-dimensional unsteady incompressible viscous turbulent and separation flow around the rudder. The simulation of self-propulsion analysis is performed in two step, because of finding optimization case of wavy shape. The first step presents there are little difference between twisted rudder and case of H_0.65 wavy twisted rudder in delivered power. So two kind of rudders are employed from first step to compare lift-to-drag ratio and torque at high angles of attack. Consequently, the wavy twisted rudder is presented as a possible way of delaying stall, allowing a rudder to have a better performance containing superior lift-to-drag ratio and torque than twisted rudder at high angles of attack. Also, as we indicate the flow visualization, check the quantity of separation flow around the rudder.

PIV를 이용한 3차원 파형관 내부 유동장의 실험적 연구 (An Experimental Investigation on Flow Field in a Pipe with Sinusoidally Wavy Surface by PIV)

  • 김성균
    • 설비공학논문집
    • /
    • 제16권4호
    • /
    • pp.368-373
    • /
    • 2004
  • A flow field in a passage with periodically converging-diverging cross-section is investigated experimentally by PIV measurement. A tube with a sinusoidally wavy cross section is one of several devices employed for enhancing the heat and mass transfer efficiency due to turbulence promotion and unsteady vortical motion. While the numerical flow visualization results have been limited to the fully developed cases, existing experimental results of this flow were simple qualitative ones by smoke or dye streak test. Therefore, the main purpose of this study is to produce quantitative flow data for fully developed and transient flow regime by the Correlation Based Correction PIV (CBC PIV) and to conjecture the analogy between flow characteristics and heat transfer enhancement with low pumping power. Another purpose of this paper is to examine the onset position of the transition and the global mixing, which results in transfer enhancement. At Re=2000, evidences of the global mixing are captured at 2.5 wavy module through the variation of RMS values and instantaneous velocity plot.

波形壁 流路내에서 凝縮이 수반되는 超音速유동에 대한 硏究 (The Study of Supersonic Flow with Condensation Along a Wavy Wall in a Channel)

  • 권순범;김병지;김흥균
    • 대한기계학회논문집
    • /
    • 제18권2호
    • /
    • pp.424-431
    • /
    • 1994
  • The characteristics of supersonic flow with condensation along a wavy wall of a small Smplitude in a channel is investigated experimentally and numerically. In the present study for the case of supersonic moist air flow, the dependency of location of reflection of oblique shock wave generated by the wavy wall, and the distributions of flow properties in the flow field, on the stagnation relative humidity and temperature is clarified by the plots of streamline, iso-Mach number and iso-flow properties of numerical result and the schlieren photographs of experiment. And. experimental and numerical results are in good agreement.

미소진폭 파형벽을 가진 유로내에서 凝縮을 수반하는 超音速 유동의 特性 - 수치해석 결과 (Thw Characteristic of Supersonic Flow with Condensation along a Wavy Wall of Small Amplitute in Channel)

  • 김병지;권순범
    • 대한기계학회논문집
    • /
    • 제16권10호
    • /
    • pp.1990-1997
    • /
    • 1992
  • 본 연구에서는 미소진폭의 파형벽을 가진 유로내에 응축성 기체인 습공기가 초음속으로 흐르는 경우의 유동에 대하여 정체점에서의 상대습도와 온도의 변화에 따 른 유동장내의 상태량의 변화와 경사충격파의 거동 등을 2차원 수직해석을 통하여 규 명하였다.