• 제목/요약/키워드: Waviness

검색결과 135건 처리시간 0.025초

실측형상오차를 이용한 HDD 스핀들용 볼베어링의 NRRO 해석 (NRRO analysis of HDD spindle ball bearings using the measured geometric imperfection)

  • 김영철;최상규;윤기찬
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 추계학술대회논문집
    • /
    • pp.369-374
    • /
    • 2002
  • This paper presents theoretical analysis of the NRRO(non-repeatable run-out) for a ball bearing with geometric imperfection. The 3DOF dynamic analysis of a ball bearing using the Newton-Raphson method is performed to calculate the displacement of shaft center. Frequency and magnitude characteristics of radial and axial vibrations are investigated. The ball form errors of the ball, the inner race, and the outer race in a HDD spindle ball bearing are precisely measured. NRRO of a ball bearing is analyzed by using the measured waviness data. It is concluded that dominant components of radial vibrations are ${\Large}f_c\;and\;2{\Larg}f_b{\pm}{\Large}f_c$, and dominant component of axial vibrations is $2{\Large}f_b$. These are generated by the size error and the second waviness of the balls.

  • PDF

Enhancement of Surface Diffusivity for Waviness Evolution on Heteroepitaxial Thin Films

  • Kim, Yun Young
    • 한국표면공학회지
    • /
    • 제47권6호
    • /
    • pp.287-292
    • /
    • 2014
  • The present study deals with a numerical analysis on the island growth of heteroepitaxial thin-films through local surface diffusivity enhancement. A non-linear governing equation for the surface waviness evolution in lattice-mismatched material systems is developed for the case of spatially-varying surface diffusivity. Results show that a flat film that is stable under constant diffusivity conditions evolves to form nanostructures upon externally-induced spatial diffusivity modulation. The periodicity of waviness can be controlled by changing the modulation parameters, which allows for generation of pattern arrays. The present study therefore points towards a post-deposition treatment technique that achieves controllability and order in the structure formation process for applications in nanoelectronics and thin-film devices.

Influence of the microstructure on effective mechanical properties of carbon nanotube composites

  • Drucker, Sven;Wilmers, Jana;Bargmann, Swantje
    • Coupled systems mechanics
    • /
    • 제6권1호
    • /
    • pp.1-15
    • /
    • 2017
  • Despite the exceptional mechanical properties of individual carbon nanotubes (CNTs), the effective properties of CNT-reinforced composites remain below expectations. The composite's microstructure has been identified as a key factor in explaining this discrepancy. In this contribution, a method for generating representative volume elements of aligned CNT sheets is presented. The model captures material characteristics such as random waviness and entanglement of individual nanotubes. Thus it allows studying microstructural effects on the composite's effective properties. Simulations investigating the strengthening effect of the application of a pre-stretch on the CNTs are carried out and found to be in very good agreement with experimental values. They highlight the importance of the nanotube's waviness and entanglement for the mechanical behavior of the composite. The presented representative volume elements are the first to accurately capture the waviness and entanglement of CNT sheets for realistically high volume fractions.

직물 복합재료의 면외 방향 등가 물성치 예측에 관한 연구 (Prediction of Out-of-plane Properties for Woven Composites)

  • 우경식;김필종
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2001년도 추계학술발표대회 논문집
    • /
    • pp.74-78
    • /
    • 2001
  • In this study, out-of-plane properties and CTEs were predicted for 8-harness satin weave textile composites. The properties were calculated by unit cell analysis for configurations with varied waviness ratio and phase shifts. Macro elements were employed to reduce the computer resource requirement. It was found that the out-of-plane properties and CTEs were varied as the phase shift changed. However the dependency was much weaker than the in-plane properties.

  • PDF

Quantitative parameters of primary roughness for describing the morphology of surface discontinuities at various scales

  • Belem, Tikou
    • Geomechanics and Engineering
    • /
    • 제11권4호
    • /
    • pp.515-530
    • /
    • 2016
  • In this paper, five different quantitative parameters were proposed for the characterization of the primary roughness which is the component of surface morphology that prevails during large strike-slip faults of more than 50 m. These parameters are mostly the anisotropic properties of rock surface morphology at various scales: (i) coefficient ($k_a$) and degree (${\delta}_a$) of apparent structural anisotropy of surface; (ii) coefficient ($k_r$) and degree (${\delta}_r$) of real structural anisotropy of surface; (iii) surface anisotropy function P(${\varphi}$); and (iv) degree of surface waviness ($W_s$). The coefficient and degree of apparent structural anisotropy allow qualifying the anisotropy/isotropy of a discontinuity according to a classification into four classes: anisotropic, moderately anisotropic/isotropic and isotropic. The coefficient and degree of real structural anisotropy of surface captures directly the actual surface anisotropy using geostatistical method. The anisotropy function predicts directional geometric properties of a surface of discontinuity from measurements in two orthogonal directions. These predicted data may subsequently be used to highlight the anisotropy/isotropy of the surface (radar plot). The degree of surface waviness allows qualifying the undulation of anisotropic surfaces. The proposed quantitative parameters allows their application at both lab and field scales.

Vibration analysis of sandwich sectorial plates considering FG wavy CNT-reinforced face sheets

  • Tahouneh, Vahid
    • Steel and Composite Structures
    • /
    • 제28권5호
    • /
    • pp.541-557
    • /
    • 2018
  • This paper presents the influence of carbon nanotubes (CNTs) waviness and aspect ratio on the vibrational behavior of functionally graded nanocomposite sandwich annular sector plates resting on two-parameter elastic foundations. The carbon nanotube-reinforced (CNTR) sandwich plate has smooth variation of CNT fraction along the thickness direction. The distributions of CNTs are considered functionally graded (FG) or uniform along the thickness and their mechanical properties are estimated by an extended rule of mixture. In this study, the classical theory concerning the mechanical efficiency of a matrix embedding finite length fibers has been modified by introducing the tube-to-tube random contact, which explicitly accounts for the progressive reduction of the tubes' effective aspect ratio as the filler content increases. Effects of CNT distribution, volume fraction, aspect ratio and waviness, and also effects of Pasternak's elastic foundation coefficients, sandwich plate thickness, face sheets thickness and plate aspect ratio are investigated on the free vibration of the sandwich plates with wavy CNT-reinforced face sheets. The study is carried out based on three-dimensional theory of elasticity and in contrary to two-dimensional theories, such as classical, the first- and the higher-order shear deformation plate theories, this approach does not neglect transverse normal deformations. The sandwich annular sector plate is assumed to be simply supported in the radial edges while any arbitrary boundary conditions are applied to the other two circular edges including simply supported, clamped and free.

Nonlinear static and vibration analysis of Euler-Bernoulli composite beam model reinforced by FG-SWCNT with initial geometrical imperfection using FEM

  • Mohammadimehr, M.;Alimirzaei, S.
    • Structural Engineering and Mechanics
    • /
    • 제59권3호
    • /
    • pp.431-454
    • /
    • 2016
  • In this paper, the nonlinear static and free vibration analysis of Euler-Bernoulli composite beam model reinforced by functionally graded single-walled carbon nanotubes (FG-SWCNTs) with initial geometrical imperfection under uniformly distributed load using finite element method (FEM) is investigated. The governing equations of equilibrium are derived by the Hamilton's principle and von Karman type nonlinear strain-displacement relationships are employed. Also the influences of various loadings, amplitude of the waviness, UD, USFG, and SFG distributions of carbon nanotube (CNT) and different boundary conditions on the dimensionless transverse displacements and nonlinear frequency ratio are presented. It is seen that with increasing load, the displacement of USFG beam under force loads is more than for the other states. Moreover it can be seen that the nonlinear to linear natural frequency ratio decreases with increasing aspect ratio (h/L) for UD, USFG and SFG beam. Also, it is shown that at the specified value of (h/L), the natural frequency ratio increases with the increasing the values amplitude of waviness while the dimensionless nonlinear to linear maximum deflection decreases. Moreover, with considering the amplitude of waviness, the stiffness of Euler-Bernoulli beam model reinforced by FG-CNT increases. It is concluded that the R parameter increases with increasing of volume fraction while the rate of this parameter decreases. Thus one can be obtained the optimum value of FG-CNT volume fraction to prevent from resonance phenomenon.

WBK 의 구조적 특성에 대한 와이어 굴곡 효과 (Effect of Strut Waviness on Structural Performance of Wire-Woven Bulk Kagome Cores)

  • 이기원;강기주
    • 대한기계학회논문집A
    • /
    • 제35권9호
    • /
    • pp.1099-1103
    • /
    • 2011
  • 기존의 WBK(와이어 직조 카고메)의 기계적 강도와 강성은 WBK 를 구성하는 요소가 반듯하다는 가정 아래에서 계산되었다. 실제 WBK 의 요소는 3 차원 나선형상을 이루고 있어 계산된 이론 해와 실험 결과값과 차이를 보인다. 이번 연구에서는 정확한 WBK 의 기계적 강도와 강성을 위해 하나의 트러스 요소의 굴곡 효과와 브레이징 접합 부를 고려하여 계산하였다. 또한 예측한 이론 해의 검증을 위한 경계주기조건(PBC) 유한요소해석을 수행하여 실험 결과값과 비교 분석하였다.

Dynamic Model to Predict Effect of Race Waviness on Vibrations Associated with Deep-Groove Ball Bearing

  • Hwang, Pyung;Nguyen, Van Trang
    • Tribology and Lubricants
    • /
    • 제30권1호
    • /
    • pp.64-70
    • /
    • 2014
  • This paper presents a numerical model for investigating the structural dynamics response of a rigid rotor supported on deep-groove ball bearings. The numerical model was used to investigate the influence of race waviness on the dynamic characteristics of a rotor ball bearing system, which is very important from a design viewpoint. The forth-order Runge-Kutta numerical integration technique was applied to determine the time displacement response, Poincare map, and frequency spectra. The analysis demonstrated that the model can be used as a tool for predicting the nonlinear dynamic behavior of a rotor ball bearing system under different operating conditions. The results of this study may help further understanding of the nonlinear dynamics of a rotor bearing system.

인공 삼각 돌출부의 거칠기 발현특성 (Roughness Mobilization Characteristics of Artificial Triangular Asperities)

  • 홍은수;최성웅;이인모
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2006년도 춘계 학술발표회 논문집
    • /
    • pp.760-767
    • /
    • 2006
  • Underestimation of rock joint shear strength comes from an inadequate consideration of roughness mobilization behavior, which is changed by asperity size as well applied normal load. In this study, we performed rock joint shear tests, and studied the roughness mobilization characteristics related with the scale of normal stress and asperities. Test specimens with artificial triangular asperities were manufactured. The specimens consisted of 3 types, and each type represented unevenness, waviness and total roughness(superposition of unevenness and waviness). The experimental results show that the roughness mobilization characteristics are varied by the scale of normal stress and asperities. Furthermore, the investigation shows that the rate of geometrical component and mechanical component in the total roughness is also varied by the scale of normal stress and asperities. These results suggest that we should consider the roughness mobilization characteristics for the roughness quantification and the shear strength modelling.

  • PDF