• Title/Summary/Keyword: Wavelets Transform

검색결과 110건 처리시간 0.019초

A Note On L$_1$ Strongly Consistent Wavelet Density Estimator for the Deconvolution Problems

  • Lee, Sungho
    • Communications for Statistical Applications and Methods
    • /
    • 제8권3호
    • /
    • pp.859-866
    • /
    • 2001
  • The problem of wavelet density estimation is studied when the sample observations are contaminated with random noise. In this paper a linear wavelet estimator based on Meyer-type wavelets is shown to be L$_1$ strongly consistent for f(x) with bounded support when Fourier transform of random noise has polynomial descent or exponential descent.

  • PDF

이산 웨이브렛 변환을 이용한 2차원 물체 인식에 관한 연구 (Analysis of 2-Dimensional Object Recognition Using discrete Wavelet Transform)

  • 박광호;김창구;기창두
    • 한국정밀공학회지
    • /
    • 제16권10호
    • /
    • pp.194-202
    • /
    • 1999
  • A method for pattern recognition based on wavelet transform is proposed in this paper. The boundary of the object to be recognized includes shape information for object of machine parts. The contour is first represented using a one-dimensional signal and normalized about translation, rotation and scale, then is used to build the wavelet transform representation of the object. Wavelets allow us to decompose a function into multi-resolution hierarchy of localized frequency bands. The recognition of 2-dimensional object based on the wavelet is described to analyze the shape of analysis technique; the discrete wavelet transform(DWT). The feature vectors obtained using wavelet analysis is classified using a multi-layer neural network. The results show that, compared with the use of fourier descriptors, recognition using wavelet is more stable and efficient representation. And particularly the performance for objects corrupted with noise is better than that of other method.

  • PDF

부하 판별을 위한 Wavelet 변환의 응용에 관한 연구 (A Study on Application of Wavelet Transform to Electrical Load Discriminations)

  • 정종원;김민성;김태홍;이준탁
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2001년도 춘계학술대회 학술발표 논문집
    • /
    • pp.109-112
    • /
    • 2001
  • Recently, the subject of \"wavelet analysis\" has drawn much attention from both mathematical and engineering application fields such as Signal Processing, Compression/Decomposition, Statistics and ets. Analogous to Fourier analysis, wavelets is a versatile tool with very rich mathematical content and great potential for applications. Specially, wavelet transform uses localizable various mother wavelet functions in time-frequency domain. In this paper, discrimination analyses of acquired electrical current signals for each and mixed loads were tried by using Morlet wavelet transform. Their representative loads were classified as TV, DRY(Dryer), REF(Refrigerate), and FL(Fluorescent Lamp).

  • PDF

EEG Characteristic Analysis of Sleep Spindle and K-Complex in Obstructive Sleep Apnea

  • Kim, Min Soo;Jeong, Jong Hyeog;Cho, Yong Won;Cho, Young Chang
    • 한국산업정보학회논문지
    • /
    • 제22권1호
    • /
    • pp.41-51
    • /
    • 2017
  • This Paper Describes a Method for the Evaluation of Sleep Apnea, Namely, the Peak Signal-to-noise ratio (PSNR) of Wavelet Transformed Electroencephalography (EEG) Data. The Purpose of this Study was to Investigate EEG Properties with Regard to Differences between Sleep Spindles and K-complexes and to Characterize Obstructive Sleep Apnea According to Sleep Stage. We Examined Non-REM and REM Sleep in 20 Patients with OSA and Established a New Approach for Detecting Sleep Apnea Base on EEG Frequency Changes According to Sleep Stage During Sleep Apnea Events. For Frequency Bands Corresponding to A3 Decomposition with a Sampling Applied to the KC and the Sleep Spindle Signal. In this Paper, the KC and Sleep Spindle are Ccalculated using MSE and PSNR for 4 Types of Mother Wavelets. Wavelet Transform Coefficients Were Obtained Around Sleep Spindles in Order to Identify the Frequency Information that Changed During Obstructive Sleep Apnea. We also Investigated Whether Quantification Analysis of EEG During Sleep Apnea is Valuable for Analyzing Sleep Spindles and The K-complexes in Patients. First, Decomposition of the EEG Signal from Feature Data was Carried out using 4 Different Types of Wavelets, Namely, Daubechies 3, Symlet 4, Biorthogonal 2.8, and Coiflet 3. We Compared the PSNR Accuracy for Each Wavelet Function and Found that Mother Wavelets Daubechies 3 and Biorthogonal 2.8 Surpassed the other Wavelet Functions in Performance. We have Attempted to Improve the Computing Efficiency as it Selects the most Suitable Wavelet Function that can be used for Sleep Spindle, K-complex Signal Processing Efficiently and Accurate Decision with Lesser Computational Time.

심전도신호의 잡음제거를 위한 웨이브렛변환의 적용에 관한 연구 (Study on Noise Reduction of ECG Signal using Wavelets Transform)

  • 장두봉;이상민;신태민;이건기
    • 전자공학회논문지S
    • /
    • 제35S권8호
    • /
    • pp.39-46
    • /
    • 1998
  • ECG신호가 임상적으로 환자의 심장활동에 관련된 여러 정보를 의사에게 제공한다는 점에서 ECG 신호의 검출은 중요한 환자 진단방법의 하나이다. 특히 QRS복합 파형, P파, T파 등의 위치와 각 파 간의 간격에 의미 있는 정보가 담겨져 있어 정확한 환자진단을 위해 의공학 분야에서 ECG신호의 잡음제거에 관련된 여러 연구들이 있어 왔다. 기존의 ECG신호의 잡음제거 방법은 특정한 단일 잡음이 혼입된 경우에는 만족할 만한 성능을 보여 주는데 반해 여러 형태의 복합잡음이 혼입된 ECG신호로부터 정상 ECG신호를 분리해 내는데는 성능의 한계를 가진다. 본 논문에서는 최근 공학분야에서 그 활용 영역이 확대되고 있는 웨이브렛 변환 기법을 ECG신호의 잡음제거에 적용하여, 잡음이 혼입된 ECG신호의 잡음제거를 통한 정상 파형 복원을 수행하였다.

  • PDF

New development of artificial record generation by wavelet theory

  • Amiri, G. Ghodrati;Ashtari, P.;Rahami, H.
    • Structural Engineering and Mechanics
    • /
    • 제22권2호
    • /
    • pp.185-195
    • /
    • 2006
  • Nowadays it is very necessary to generate artificial accelerograms because of lack of adequate earthquake records and vast usage of time-history dynamic analysis to calculate responses of structures. According to the lack of natural records, the best choice is to use proper artificial earthquake records for the specified design zone. These records should be generated in a way that would contain seismic properties of a vast area and therefore could be applied as design records. The main objective of this paper is to present a new method based on wavelet theory to generate more artificial earthquake records, which are compatible with target spectrum. Wavelets are able to decompose time series to several levels that each level covers a specific range of frequencies. If an accelerogram is transformed by Fourier transform to frequency domain, then wavelets are considered as a transform in time-scale domain which frequency has been changed to scale in the recent domain. Since wavelet theory separates each signal, it is able to generate so many artificial records having the same target spectrum.

THE DECISION OF OPTIMUM BASIS FUNCTION IN IMAGE CLASSIFICATION BASED ON WAVELET TRANSFORM

  • Yoo, Hee-Young;Lee, Ki-Won;Jin, Hong-Sung;Kwon, Byung-Doo
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2008년도 International Symposium on Remote Sensing
    • /
    • pp.169-172
    • /
    • 2008
  • Land-use or land-cover classification of satellite images is one of the important tasks in remote sensing application and many researchers have been tried to enhance classification accuracy. Previous studies show that the classification technique based on wavelet transform is more effective than that of traditional techniques based on original pixel values, especially in complicated imagery. Various wavelets can be used in wavelet transform. Wavelets are used as basis functions in representing other functions, like sinusoidal function in Fourier analysis. In these days, some basis functions such as Haar, Daubechies, Coiflets and Symlets are mainly used in 2D image processing. Selecting adequate wavelet is very important because different results could be obtained according to the type of basis function in classification. However, it is not easy to choose the basis function which is effective to improve classification accuracy. In this study, we computed the wavelet coefficients of satellite image using 10 different basis functions, and then classified test image. After evaluating classification results, we tried to ascertain which basis function is the most effective for image classification. We also tried to see if the optimum basis function is decided by energy parameter before classifying the image using all basis function. The energy parameter of signal is the sum of the squares of wavelet coefficients. The energy parameter is calculated by sub-bands after the wavelet decomposition and the energy parameter of each sub-band can be a favorable feature of texture. The decision of optimum basis function using energy parameter in the wavelet based image classification is expected to be helpful for saving time and improving classification accuracy effectively.

  • PDF

Medical Image Compression Using Quincunx Wavelets and SPIHT Coding

  • Beladgham, Mohammed;Bessaid, Abdelhafid;Taleb-Ahmed, Abdelmalik;Boucli Hacene, Ismail
    • Journal of Electrical Engineering and Technology
    • /
    • 제7권2호
    • /
    • pp.264-272
    • /
    • 2012
  • In the field of medical diagnostics, interested parties have resorted increasingly to medical imaging. It is well established that the accuracy and completeness of diagnosis are initially connected with the image quality, but the quality of the image is itself dependent on a number of factors including primarily the processing that an image must undergo to enhance its quality. This paper introduces an algorithm for medical image compression based on the quincunx wavelets coupled with SPIHT coding algorithm, of which we applied the lattice structure to improve the wavelet transform shortcomings. In order to enhance the compression by our algorithm, we have compared the results obtained with those of other methods containing wavelet transforms. For this reason, we evaluated two parameters known for their calculation speed. The first parameter is the PSNR; the second is MSSIM (structural similarity) to measure the quality of compressed image. The results are very satisfactory regarding compression ratio, and the computation time and quality of the compressed image compared to those of traditional methods.

Performance evaluation of wavelet and curvelet transforms based-damage detection of defect types in plate structures

  • Hajizadeh, Ali R.;Salajegheh, Javad;Salajegheh, Eysa
    • Structural Engineering and Mechanics
    • /
    • 제60권4호
    • /
    • pp.667-691
    • /
    • 2016
  • This study focuses on the damage detection of defect types in plate structures based on wavelet transform (WT) and curvelet transform (CT). In particular, for damage detection of structures these transforms have been developed since the last few years. In recent years, the CT approach has been also introduced in an attempt to overcome inherent limitations of traditional multi-scale representations such as wavelets. In this study, the performance of CT is compared with WT in order to demonstrate the capability of WT and CT in detection of defect types in plate structures. To achieve this purpose, the damage detection of defect types through defect shape in rectangular plate is investigated. By using the first mode shape of plate structure and the distribution of the coefficients of the transforms, the damage existence, the defect location and the approximate shape of defect are detected. Moreover, the accuracy and performance generality of the transforms are verified through using experimental modal data of a plate.

Lifting Scheme을 이용한 이미지 잡음 제거 (Image Be-noising Using Lifting Scheme)

  • Park, Young-Seok;Kwak, Hoon-Sung
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2003년도 하계종합학술대회 논문집 Ⅳ
    • /
    • pp.1731-1734
    • /
    • 2003
  • In this paper, we describe an approach for image denoising using the lifting construction, with the spatial adaptive wavelet transform. The adaptive lifting scheme is implemented in spatial domain to be adjusted thresholds to reduce noise. In this approach we represent adaptive characteristics of biorthogonal wavelets for choosing predictors effectively. Predict filter is changed from sample to sample according to local signal features with their vanishing moments. We in this approach have implemented and applied to image denoising by finding a relevant minimax threshold. Experimental results show that the adaptive method of denoising process is compared with existing ones, such as non-adaptive wavelet, CRF(13, 7) and SWE(13, 7) wavelets used by JPEG2000.

  • PDF