• Title/Summary/Keyword: Wavelet feature

Search Result 462, Processing Time 0.031 seconds

컬러와 패턴을 이용한 텍스타일 영상에서의 감정인식 시스템 (Emotion Recognition Using Color and Pattern in Textile Images)

  • 신윤희;김영래;김은이
    • 전자공학회논문지CI
    • /
    • 제45권6호
    • /
    • pp.154-161
    • /
    • 2008
  • 본 논문에서는 컬러와 패턴 정보를 이용하여 텍스타일 영상에 포함된 감성을 자동으로 인식할 수 있는 방법을 제안한다. 이때, 감성을 표현하기 위해 고바야시의 10가지 감성 그룹 - {romantic, clear, natural, casual, elegant chic, dynamic, classic, dandy, modern}- 을 이용한다. 제안된 시스템은 특징 추출과 분류로 구성된다. 특징 추출 단계에서는 주관적인 감성을 물리적인 영상 특징으로 표현하기 위해 텍스타일을 구성하는 대표 컬러와 패턴을 추출 한다. 이 때 대표 컬러를 추출하기 위해서 양자화 기법을 이용하고, 패턴정보를 표현하기 위해서는 웨이블릿 변환 후의 통계적인 정보를 이용한다 추출된 컬러와 패턴 특징은 신경망을 이용한 분류기의 입력으로 사용되고, 분류기를 통해 입력 텍스타일이 임의의 감성을 가지는지 여부가 결정된다. 제안된 감성인식 방법의 효율성을 증명하기 위해서 인위적인 도메인, 패션 도메인, 인테리어 도메인에서 얻어진 389장의 텍스타일 영상에서 실험하였다. 다양한 도메인의 영상에 대해 사용된 결과 제안된 방법은 100%의 정확도와 99%의 재현율을 보였다. 이러한 실험 결과는 제안된 감성인식 방법이 다양한 텍스타일 관련 산업분야에 일반화되어 사용될 수 있음을 보여주었다.

레이저 용접품질 검사기법 개발을 위한 시뮬레이션 툴과 이를 이용한 감시 시스템의 개발 (Development of a Simulation Tool and a Monitoring System for Laser Welding Quality Inspection)

  • 이명수;권장우;길경석
    • 한국정보통신학회논문지
    • /
    • 제5권5호
    • /
    • pp.985-993
    • /
    • 2001
  • 본 연구에서는 플라즈마 감시에 의한 용접성 평가방식과 효율적인 감시 알고리즘을 위한 시뮬레이션 툴의 개발을 목표로 한다. 레이저 용접 시 발생하는 플라즈마를 검출하기 위하여 플라즈마에서 발생하는 자외선신호를 반도체 광 센서를 사용하여 검출하고, 감시장치로 쓰이는 개인용 컴퓨터에 고속으로 전달, 저장하는 장치와 전달된 신호를 이용하여 용접 결함을 검출하는 모니터링 시스템을 개발하였다. 이 장치를 사용하여 용접 데이터베이스를 구축하고, 용접성과 플라즈마 신호와의 관계를 평가하고, 분석하였으며 특히 용접 결함 검출 모니터링에 적합한 특징의 선택, 결정을 위한 특징의 수, 분류기 사이의 비교 등을 위하여 오프라인 상태에서 시스템 구현에 적합한 특징의 선택, 결정을 위한 특징의 수, 분류기 사이의 비교 등을 비교 분석할 수 있는 시뮬레이션 툴의 개발과 이를 실제 시스템에 구현하는 방식을 취하였다. 목표로 하고 있는 시스템은 신뢰성 있고 효율적인 레이저 용접 결함 감시 시스템이며 이의 구현을 위해 용접 품질 모니터링 프로그램 중 분류기와 GUI을 구현하였으며 Perceptron, Wavelet, MLP 등을 적용하여 이의 결과가 실제 실시간 품질 해석에 적합한 데이터로 사용할 수 있는가에 대한 분석도 행하였다.

  • PDF

물체 분할 기법을 이용한 내용기반 영상 검색 (A Content-Based Image Retrieval using Object Segmentation Method)

  • 송석진;차봉현;김명호;남기곤;이상욱;주재흠
    • 융합신호처리학회논문지
    • /
    • 제4권1호
    • /
    • pp.1-8
    • /
    • 2003
  • 현재 사회전반에 걸쳐 급격히 증가하고 있는 멀티미디어 정보를 효율적으로 관리, 활용할 수 있는 방법이 다양하게 연구되고 있다. 본 논문에서는 정지영상 검색을 위해 사용자가 질의(query)를 요구하면 질의 물체를 배경으로부터 분할한 후 유사물체를 영상 데이터베이스 내에서 검색할 수 있는 내용기반 영상검색 시스템을 구현하였다. 질의영상이 들어오면 우선 메디안 필터링 처리를 하여 잡음 제거한 후 캐니 에지 탐지법으로 물체의 에지를 구한다. 그리고 볼록 다각형 기법을 이용하여 배경으로부터 질의물체를 분할한다. 분할된 영상으로부터 컬러 히스토그램을 구한 후 데이터 베이스내의 영상과 히스토그램 인터섹션을 하여 유사치를 구한다 또한 공간적 그레이 분포와 질감특성을 추출하기 위해 분할된 영상을 그레이 영상으로도 변환시켜 웨블릿 변환한 후 밴디드 오토코릴로그램과 에너지를 구해 유사치를 구한다. 이렇게 구한 유사치을 더해 최종 유사영상을 검색하는데 물체 분할기법을 사용함으로써 배경에 강인할 뿐 아니라 보다 정확한 물체 검색이 가능하였다.

  • PDF

영상의 색체 강도 엔트로피를 이용한 나비 종 자동 인식 향상 방법 (A Performance Improvement of Automatic Butterfly Identification Method Using Color Intensity Entropy)

  • 강승호;김태희
    • 한국콘텐츠학회논문지
    • /
    • 제17권5호
    • /
    • pp.624-632
    • /
    • 2017
  • 영상을 이용한 나비 종 자동 인식 기법은 생물종 다양성 연구 및 종의 진화, 발달 과정의 연구를 위한 기초 작업을 돕는 것으로 연구자들의 관심이 높다. 기계학습 기반의 나비 종 인식 시스템은 사용하는 특징 추출 방법에 성능이 크게 좌우되는 성질을 가지고 있다. 본 논문은 나비 영상이 가진 색채 강도의 분포를 이용하는 색채 강도 (Color Intensity) 엔트로피를 제안하고 기존에 제시된 가지 길이 유사성 (Branch Length Similarity) 엔트로피와 함께 사용할 경우 10% 이상의 인식률 향상을 얻을 수 있음을 보인다. 제안한 방법의 신뢰성 있는 성능 평가를 위해 영상 인식에 자주 사용되는 대표적인 특징 추출 방법인 아이겐 이미지, 2D 푸리에 변환, 2D 웨이블릿 변환 방법들을 비교 대상으로 다양한 기계학습을 이용해 성능을 평가한다.

필터 및 특징 선택 기반의 적응형 얼굴 인식 방법 (An Adaptive Method For Face Recognition Based Filters and Selection of Features)

  • 조병모;김기한;이필규
    • 한국콘텐츠학회논문지
    • /
    • 제9권6호
    • /
    • pp.1-8
    • /
    • 2009
  • 2D 영상 이미지를 인식하는데 있어서, 테스트 이미지를 입력 받는 카메라의 설치 공간 및 설정 상황에 따라 밝기, 명암, 빛의 방향 등과 같은 인식의 성능에 영향을 끼칠 수 있는 요소들이 매우 많이 존재한다. 본 논문은 카메라가 위치한 환경 상의 최소의 샘플 이미지를 가지고, 그 환경에서 입력되는 영상의 인식 성공률을 높일 수 있는 적응형 얼굴 인식 방법을 제안하고 있다. 제안한 적응형 얼굴 인식은 두 개의 부분으로 구성되어 있는데, 하나는 환경 적응을 하기 위한 부분이고, 다른 하나는 얼굴 인식을 수행하는 부분이다. 전자인 환경 적응 모듈에서는 안정 상태 유전 알고리즘을 사용하여 인식기가 최적의 성능을 낼 수 있는 필터 조합과 필터 파라메터와 특징 벡터 집합 차원을 결정하고, 후자인 얼굴 인식 모듈에서는 그 결과를 사용하여 얼굴 인식 결과를 확인한다. 얼굴 인식 과정에서 이미지 사이의 유사도를 측정하기 위해서 가보 웨이블릿을 사용하였고, 인식의 결과를 도출하는 과정에서는 k-Nearest Neighbor을 사용하였다. 적응형 얼굴 인식 방법을 테스트 하기위해, 사인 함수의 가중치를 사용한 명암 노이즈, 임펄스 노이즈, 복합 노이즈에 관하여 각각 실험을 하였고, 진화 후에는 일반적으로 발생할 수 있는 노이즈에 대한 급격한 인식률 저하를 방지할 수 있음을 확인하였다.

인공 신경망을 이용한 전기 아크 신호 검출 (Electrical Arc Detection using Artificial Neural Network)

  • 이상익;강석우;김태원;이승수;김만배
    • 방송공학회논문지
    • /
    • 제24권5호
    • /
    • pp.791-801
    • /
    • 2019
  • 전기화재의 원인중의 하나는 직렬 아크이다. 최근까지 아크 신호를 검출하기 위해 다양한 기법들이 진행되고 있다. 시간 신호에 푸리에 변환, 웨이블릿, 또는 통계적 특징 등을 활용하여 아크 검출을 하는 방법들이 소개되었지만, 다양한 불규칙 아크 파형 때문에, 실제 환경에서는 아크 성능이 저하되는 문제가 있다. 따라서, 기존의 부족한 특징 데이터를 증가시켜, 성능을 개선하는 것이 요구된다. 본 논문에서는 입력신호를 변분 모드 분할을 통해 원신호를 분할한 후 통계적 특징을 추출한다. 변분 모드 분할으로부터 추출한 통계적 특징의 성능이 원신호로부터 얻은 특징보다 개선된 성능을 얻는다. 아크 분류기로 인공 신경망을 이용하고, 14,000개의 학습 데이터에 적용한 결과 VMD의 사용이 약 4%의 아크 검출 성능을 높혔다.

자료변환 기반 특징과 다중 분류자를 이용한 다중시기 SAR자료의 분류 (Classification of Multi-temporal SAR Data by Using Data Transform Based Features and Multiple Classifiers)

  • 유희영;박노욱;홍석영;이경도;김예슬
    • 대한원격탐사학회지
    • /
    • 제31권3호
    • /
    • pp.205-214
    • /
    • 2015
  • 이 연구에서는 자료변환기법을 이용해 추출된 여러 특징과 다양한 분류방법론을 결합하여 다중시기 SAR 자료를 위한 새로운 토지피복 분류기법을 제안하였다. 먼저, 다중시기 SAR 자료로부터 원본자료와는 다른 새로운 정보를 추출하기 위해 주성분분석과 3차원 웨이블렛 변환을 이용한 자료변환을 수행하였다. 그리고 나서 최대우도법 분류자, 신경망, support vector machine을 포함한 세 가지 다른 분류자를 변환된 특징자료들과 원본 후방산란계수 자료를 포함한 세가지 자료에 적용하여 다양한 초기 분류 결과를 얻도록 한다. 이후 다수결규칙을 통해 모든 초기결과를 결합하여 최종 분류 결과를 생성하게 된다. 다중시기 ENVISAT ASAR 자료를 이용한 사례연구에서 모든 초기 결과는 사용한 특징자료와 분류자의 종류에 따라 매우 다양한 분류정확도를 보였다. 이러한 9개의 초기 분류 결과를 결합한 최종 분류 결과는 가장 높은 분류 정확도를 보여주고 있는데, 이는 각 초기 분류 결과가 토지피복을 결정하기 위한 상호 보완적인 정보를 제공하기 때문이다. 이 연구에서의 분류정확도 향상은 주로 자료변환을 통해 얻어진 각기 다른 특징자료와 다른 분류자를 결합에 의한 다양성 확보에서 기인한다. 그러므로 이 연구에서 제안한 토지피복 분류방법론은 다중시기 SAR자료의 분류에 효과적으로 적용가능하며, 또한 다중센서 원격탐사 자료융합으로 확장이 가능하다.

의료자산보호에서 얼굴인식을 위한 가보 웨이블릿 분석 (Gabor Wavelet Analysis for Face Recognition in Medical Asset Protection)

  • 전인자;정경용;이영호
    • 한국콘텐츠학회논문지
    • /
    • 제11권11호
    • /
    • pp.10-18
    • /
    • 2011
  • 개인정보보호법의 시행은 의료기관에서 의료자산에 대한 보안이 중요시 되고 있으며 이를 위한 얼굴인식은 가장 흥미롭지만 다양한 문제점을 가지고 있는 요소 중의 하나이다. 얼굴인식은 얼굴 영상의 변화하는 요인인 포즈, 조명, 표정과 크기의 변화요소를 포함하고 있다. 이와 같은 변화 요인 중에서 빛의 위치와 방향의 변화요인이 가장 큰 어려움중의 하나이다. 이와 같은 단점을 극복하기 위하여 본 논문에서는 의료자산 보호를 위한 CCTV 관제에서 얼굴인식을 위하여 가보웨이블릿의 계수의 분석, 커널 선정, 특징점, 커널크기와 같은 요소를 분석하였다. 제안된 방법은 분석으로 구성되어있다. 첫 번째 분석은 이미지로부터 커널을 선정하기 위한 것이며, 두 번째 분석은 커널 크기에 대한 계수 분석이다. 마지막으로 입력 영상의 크기에 따른 가보커널 크기의 변화에 대한 측정이다. 실험을 통하여 도출된 계수를 이용하여 얼굴인식을 수행하였으며, 평균 97.3%라는 인식 결과를 도출하였다. 제안하는 방법을 개발하여 논리적 타당성과 유효성을 검증하기 위해 실험적인 적용을 시도하고자 한다. 따라서 얼굴인식에서 서비스의 만족도와 질을 향상시켰다.

저노출 카메라와 웨이블릿 기반 랜덤 포레스트를 이용한 야간 자동차 전조등 및 후미등 인식 (Vehicle Headlight and Taillight Recognition in Nighttime using Low-Exposure Camera and Wavelet-based Random Forest)

  • 허두영;김상준;곽충섭;남재열;고병철
    • 방송공학회논문지
    • /
    • 제22권3호
    • /
    • pp.282-294
    • /
    • 2017
  • 본 논문에서는 차량이 움직일 때 발생하는 카메라의 움직임, 도로상의 광원에 강건한 지능형 전조등 제어 시스템을 제안한다. 후보광원을 검출할 때 카메라의 원근 범위 추정 모델을 기반으로 한 ROI (Region of Interest)를 사용하며 이는 FROI (Front ROI)와 BROI (Back ROI)로 나뉘어 사용된다. ROI내에서 차량의 전조등과 후미등, 반사광 및 주변 도로의 조명들은 2개의 적응적 임계값에 의해 세그먼트화 된다. 세그먼트화 된 광원 후보군들로부터 후미등은 적색도(redness)와 Haar-like특징에 기반한 랜덤포레스트 분류기에 의해 검출된다. 전조등과 후미등 분류 과정에서 빠른 학습과 실시간 처리를 위해 SVM(Support Vector Machine) 또는 CNN(Convolutional Neural Network)을 사용하지 않고 랜덤포레스트 분류기를 사용했다. 마지막으로 페어링(Pairing) 단계에서는 수직좌표 유사성, 광원들간의 연관성 검사와 같은 사전 정의된 규칙을 적용한다. 제안된 알고리즘은 다양한 야간 운전환경을 포함하는 데이터에 적용한 결과, 최근의 관련연구 보다 향상된 검출 성능을 보여주었다.

형태와 텍스쳐 특징을 조합한 나뭇잎 분류 시스템의 성능 평가 (Performance Evaluations for Leaf Classification Using Combined Features of Shape and Texture)

  • 김선종;김동필
    • 지능정보연구
    • /
    • 제18권3호
    • /
    • pp.1-12
    • /
    • 2012
  • 길 옆이나 공원 또는 조경시설에는 많은 나무들을 포함하고 있다. 비록 많은 나무들이 쉽게 우리 주변에서 보이지만, 일반인들이 그 나무의 이름, 종류 및 정보들을 얻기가 힘든 경우도 있다. 나무의 이름이나 정보를 얻기 위하여 인터넷이나 서적을 이용하여 찾아 분류하여야 한다. 나무의 구성 요소는 잎, 꽃, 수피 등이 있는데, 일반적으로 나무의 잎을 이용하여 분류할 수 있다. 이는 잎이 형태, 잎맥 등의 정보를 포함하고 있기 때문이다. 잎의 형태는 나무의 종류를 결정하는데 중요한 역할을 하며, 또한 잎맥을 포함한 텍스쳐도 나무의 종류를 분류하는데 유용하게 사용된다. 본 논문에서는 형태와 텍스쳐를 조합한 특징들을 이용한 잎 분류 시스템에 대한 성능을 평가하였다. 형태 특징으로는 푸리에 기술자를 이용하였고, 텍스쳐 특징으로는 GLCM 또는 웨이브릿 기술자, 그리고 그들의 조합을 사용하였다. 그리고 사용된 데이터는 인터넷에서 용이하게 구할 수 있고, 분류 성능평가에 사용되는 Flavia 잎 데이터 셋을 사용하였다. 형태와 텍스쳐를 기반으로 하는 다양한 조합을 가진 분류 시스템의 성능을 인식률과 PR(precision-recall) 지수로 평가하고, 성능을 비교하였다. 성능평가 결과, 형태와 텍스쳐를 조합한 특징들을 갖는 시스템의 성능이 조합하지 않은 시스템의 성능보다 나아짐을 알 수 있었다.