• 제목/요약/키워드: Wavelet feature

Search Result 462, Processing Time 0.02 seconds

Emotion Recognition of Korean and Japanese using Facial Images (얼굴영상을 이용한 한국인과 일본인의 감정 인식 비교)

  • Lee, Dae-Jong;Ahn, Ui-Sook;Park, Jang-Hwan;Chun, Myung-Geun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.2
    • /
    • pp.197-203
    • /
    • 2005
  • In this paper, we propose an emotion recognition using facial Images to effectively design human interface. Facial database consists of six basic human emotions including happiness, sadness, anger, surprise, fear and dislike which have been known as common emotions regardless of nation and culture. Emotion recognition for the facial images is performed after applying the discrete wavelet. Here, the feature vectors are extracted from the PCA and LDA. Experimental results show that human emotions such as happiness, sadness, and anger has better performance than surprise, fear and dislike. Expecially, Japanese shows lower performance for the dislike emotion. Generally, the recognition rates for Korean have higher values than Japanese cases.

Gabor Descriptors Extraction in the SURF Feature Point for Improvement Accuracy in Face Recognition (얼굴 인식의 정확도 향상을 위한 SURF 특징점에서의 Gabor 기술어 추출)

  • Lee, Jae-Yong;Kim, Ji-Eun;Oh, Seoung-Jun
    • Journal of Broadcast Engineering
    • /
    • v.17 no.5
    • /
    • pp.808-816
    • /
    • 2012
  • Face recognition has been actively studied and developed in various fields. In recent years, interest point extraction algorithms mainly used for object recognition were being applied to face recognition. The SURF(Speeded Up Robust Features) algorithm was used in this paper which was one of typical interest point extraction algorithms. Generally, the interest points extracted from human faces are less distinctive than the interest points extracted from objects due to the similar shapes of human faces. Thus, the accuracy of the face recognition using SURF tends to be low. In order to improve it, we propose a face recognition algorithm which performs interest point extraction by SURF and the Gabor wavelet transform to extract descriptors from the interest points. In the result, the proposed method shows around 23% better recognition accuracy than SURF-based conventional methods.

Disparity estimation using wavelet transformation and reference points (웨이블릿 변환과 기준점을 이용한 변위 추정)

  • 노윤향;고병철;변혜란;유지상
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.2A
    • /
    • pp.137-145
    • /
    • 2002
  • In the method of 3D modeling, stereo matching method which obtains three dimensional depth information from the two images is taken from the different view points. In general, it is very essential work for the 3D modeling from 2D stereo images to estimate the exact disparity through fading the conjugate pair of pixel from the left and right image. In this paper to solve the problems of the stereo image disparity estimation, we introduce a novel approach method to improve the exactness and efficiency of the disparity. In the first place, we perform a wavelet transformation of the stereo images and set the reference points in the image by the feature-based matching method. This reference points have very high probability over 95 %. In the base of these reference points we can decide the size of the variable block searching windows for estimating dense disparity of area based method and perform the ordering constraint to prevent mismatching. By doing this, we could estimate the disparity in a short time and solve the occlusion caused by applying the fried-sized windows and probable error caused by repeating patterns.

Computational Analysis of PCA-based Face Recognition Algorithms (PCA기반의 얼굴인식 알고리즘들에 대한 연산방법 분석)

  • Hyeon Joon Moon;Sang Hoon Kim
    • Journal of Korea Multimedia Society
    • /
    • v.6 no.2
    • /
    • pp.247-258
    • /
    • 2003
  • Principal component analysis (PCA) based algorithms form the basis of numerous algorithms and studies in the face recognition literature. PCA is a statistical technique and its incorporation into a face recognition system requires numerous design decisions. We explicitly take the design decisions by in-troducing a generic modular PCA-algorithm since some of these decision ate not documented in the literature We experiment with different implementations of each module, and evaluate the different im-plementations using the September 1996 FERET evaluation protocol (the do facto standard method for evaluating face recognition algorithms). We experiment with (1) changing the illumination normalization procedure; (2) studying effects on algorithm performance of compressing images using JPEG and wavelet compression algorithms; (3) varying the number of eigenvectors in the representation; and (4) changing the similarity measure in classification process. We perform two experiments. In the first experiment, we report performance results on the standard September 1996 FERET large gallery image sets. The result shows that empirical analysis of preprocessing, feature extraction, and matching performance is extremely important in order to produce optimized performance. In the second experiment, we examine variations in algorithm performance based on 100 randomly generated image sets (galleries) of the same size. The result shows that a reasonable threshold for measuring significant difference in performance for the classifiers is 0.10.

  • PDF

EEG Signal Classification Algorithm based on DWT and SVM for Driving Robot Control (주행로봇제어를 위한 DWT와 SVM기반의 EEG신호 분류 알고리즘)

  • Lee, Kibae;Lee, Chong Hyun;Bae, Jinho;Lee, Jaeil
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.8
    • /
    • pp.117-125
    • /
    • 2015
  • In this paper, we propose a classification algorithm based on the obtained EEG(Electroencephalogram) signal for the control of 'left' and 'right' turnings of which a driving system composed of EEG sensor, Labview, DAQ, Matlab and driving robot. The proposed algorithm uses features extracted from frequency band information obtained by DWT (Discrete Wavelet Transform) and selects features of high discrimination by using Fisher score. We, also propose the number of feature vectors for the best classification performance by using SVM(Support Vector Machine) classifier and propose a decision pending algorithm based on MLD (Maximum Likelihood Decision) to prevent malfunction due to misclassification. The selected four feature vectors for the proposed algorithm are the mean of absolute value of voltage and the standard deviation of d5(2-4Hz) and d2(16-32Hz) frequency bands of P8 channel according to the international standard electrode placement method. By using the SVM classifier, we obtained 98.75% accuracy and 1.25% error rate. Also, when we specify error probability of 70% for decision pending, we obtained 95.63% accuracy and 0% error rate by using the proposed decision pending algorithm.

The Method of Wet Road Surface Condition Detection With Image Processing at Night (영상처리기반 야간 젖은 노면 판별을 위한 방법론)

  • KIM, Youngmin;BAIK, Namcheol
    • Journal of Korean Society of Transportation
    • /
    • v.33 no.3
    • /
    • pp.284-293
    • /
    • 2015
  • The objective of this paper is to determine the conditions of road surface by utilizing the images collected from closed-circuit television (CCTV) cameras installed on roadside. First, a technique was examined to detect wet surfaces at nighttime. From the literature reviews, it was revealed that image processing using polarization is one of the preferred options. However, it is hard to use the polarization characteristics of road surface images at nighttime because of irregular or no light situations. In this study, we proposes a new discriminant for detecting wet and dry road surfaces using CCTV image data at night. To detect the road surface conditions with night vision, we applied the wavelet packet transform for analyzing road surface textures. Additionally, to apply the luminance feature of night CCTV images, we set the intensity histogram based on HSI(Hue Saturation Intensity) color model. With a set of 200 images taken from the field, we constructed a detection criteria hyperplane with SVM (Support Vector Machine). We conducted field tests to verify the detection ability of the wet road surfaces and obtained reliable results. The outcome of this study is also expected to be used for monitoring road surfaces to improve safety.

Emotion Recognition System Using Neural Networks in Textile Images (신경망을 이용한 텍스타일 영상에서의 감성인식 시스템)

  • Kim, Na-Yeon;Shin, Yun-Hee;Kim, Soo-Jeong;Kim, Jee-In;Jeong, Karp-Joo;Koo, Hyun-Jin;Kim, Eun-Yi
    • Journal of KIISE:Software and Applications
    • /
    • v.34 no.9
    • /
    • pp.869-879
    • /
    • 2007
  • This paper proposes a neural network based approach for automatic human emotion recognition in textile images. To investigate the correlation between the emotion and the pattern, the survey is conducted on 20 peoples, which shows that a emotion is deeply affected by a pattern. Accordingly, a neural network based classifier is used for recognizing the pattern included in textiles. In our system, two schemes are used for describing the pattern; raw-pixel data extraction scheme using auto-regressive method (RDES) and wavelet transformed data extraction scheme (WTDES). To assess the validity of the proposed method, it was applied to recognize the human emotions in 100 textiles, and the results shows that using WTDES guarantees better performance than using RDES. The former produced the accuracy of 71%, while the latter produced the accuracy of 90%. Although there are some differences according to the data extraction scheme, the proposed method shows the accuracy of 80% on average. This result confirmed that our system has the potential to be applied for various application such as textile industry and e-business.

3D Face Recognition using Wavelet Transform Based on Fuzzy Clustering Algorithm (펴지 군집화 알고리즘 기반의 웨이블릿 변환을 이용한 3차원 얼굴 인식)

  • Lee, Yeung-Hak
    • Journal of Korea Multimedia Society
    • /
    • v.11 no.11
    • /
    • pp.1501-1514
    • /
    • 2008
  • The face shape extracted by the depth values has different appearance as the most important facial information. The face images decomposed into frequency subband are signified personal features in detail. In this paper, we develop a method for recognizing the range face images by multiple frequency domains for each depth image using the modified fuzzy c-mean algorithm. For the proposed approach, the first step tries to find the nose tip that has a protrusion shape on the face from the extracted face area. And the second step takes into consideration of the orientated frontal posture to normalize. Multiple contour line areas which have a different shape for each person are extracted by the depth threshold values from the reference point, nose tip. And then, the frequency component extracted from the wavelet subband can be adopted as feature information for the authentication problems. The third step of approach concerns the application of eigenface to reduce the dimension. And the linear discriminant analysis (LDA) method to improve the classification ability between the similar features is adapted. In the last step, the individual classifiers using the modified fuzzy c-mean method based on the K-NN to initialize the membership degree is explained for extracted coefficient at each resolution level. In the experimental results, using the depth threshold value 60 (DT60) showed the highest recognition rate among the extracted regions, and the proposed classification method achieved 98.3% recognition rate, incase of fuzzy cluster.

  • PDF

Study on evaluating the significance of 3D nuclear texture features for diagnosis of cervical cancer (자궁경부암 진단을 위한 3차원 세포핵 질감 특성값 유의성 평가에 관한 연구)

  • Choi, Hyun-Ju;Kim, Tae-Yun;Malm, Patrik;Bengtsson, Ewert;Choi, Heung-Kook
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.10
    • /
    • pp.83-92
    • /
    • 2011
  • The aim of this study is to evaluate whether 3D nuclear chromatin texture features are significant in recognizing the progression of cervical cancer. In particular, we assessed that our method could detect subtle differences in the chromatin pattern of seemingly normal cells on specimens with malignancy. We extracted nuclear texture features based on 3D GLCM(Gray Level Co occurrence Matrix) and 3D Wavelet transform from 100 cell volume data for each group (Normal, LSIL and HSIL). To evaluate the feasibility of 3D chromatin texture analysis, we compared the correct classification rate for each of the classifiers using them. In addition to this, we compared the correct classification rates for the classifiers using the proposed 3D nuclear texture features and the 2D nuclear texture features which were extracted in the same way. The results showed that the classifier using the 3D nuclear texture features provided better results. This means our method could improve the accuracy and reproducibility of quantification of cervical cell.

Comparative analysis of linear model and deep learning algorithm for water usage prediction (물 사용량 예측을 위한 선형 모형과 딥러닝 알고리즘의 비교 분석)

  • Kim, Jongsung;Kim, DongHyun;Wang, Wonjoon;Lee, Haneul;Lee, Myungjin;Kim, Hung Soo
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.spc1
    • /
    • pp.1083-1093
    • /
    • 2021
  • It is an essential to predict water usage for establishing an optimal supply operation plan and reducing power consumption. However, the water usage by consumer has a non-linear characteristics due to various factors such as user type, usage pattern, and weather condition. Therefore, in order to predict the water consumption, we proposed the methodology linking various techniques that can consider non-linear characteristics of water use and we called it as KWD framework. Say, K-means (K) cluster analysis was performed to classify similar patterns according to usage of each individual consumer; then Wavelet (W) transform was applied to derive main periodic pattern of the usage by removing noise components; also, Deep (D) learning algorithm was used for trying to do learning of non-linear characteristics of water usage. The performance of a proposed framework or model was analyzed by comparing with the ARMA model, which is a linear time series model. As a result, the proposed model showed the correlation of 92% and ARMA model showed about 39%. Therefore, we had known that the performance of the proposed model was better than a linear time series model and KWD framework could be used for other nonlinear time series which has similar pattern with water usage. Therefore, if the KWD framework is used, it will be possible to accurately predict water usage and establish an optimal supply plan every the various event.