• Title/Summary/Keyword: Wavelet denoising

Search Result 137, Processing Time 0.025 seconds

Noise Reduction for Photon Counting Imaging Using Discrete Wavelet Transform

  • Lee, Jaehoon;Kurosaki, Masayuki;Cho, Myungjin;Lee, Min-Chul
    • Journal of information and communication convergence engineering
    • /
    • v.19 no.4
    • /
    • pp.276-283
    • /
    • 2021
  • In this paper, we propose an effective noise reduction method for photon counting imaging using a discrete wavelet transform. Conventional 2D photon counting imaging was used to visualize the object under dark conditions using statistical methods, such as the Poisson random process. The photons in the scene were estimated using a statistical method. However, photons which disturb the visualization and decrease the image quality may occur in the background where there is no object. Although median filters are used to reduce the noise, the noise in the scene remains. To remove the noise effectively, our proposed method uses the discrete wavelet transform, which removes the noise in the scene using a specific thresholding method that utilizes photon counting imaging characteristics. We conducted an optical experiment to demonstrate the denoising performance of the proposed method.

WDENet: Wavelet-based Detail Enhanced Image Denoising Network (Wavelet 기반의 영상 디테일 향상 잡음 제거 네트워크)

  • Zheng, Jun;Wee, Seungwoo;Jeong, Jechang
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2021.06a
    • /
    • pp.176-179
    • /
    • 2021
  • 최근 딥 러닝 기법의 하나인 합성곱 신경망(Convolutional Neural Network, CNN)은 영상 잡음(Noise) 제거 분야에서 전통적인 기법보다 좋은 성능을 나타내고 있지만 학습하는 과정에서 영상 내 디테일한 부분이 손실될 수 있다. 본 논문에서는 웨이블릿 변환(Wavelet Transform)을 기반으로 영상 내 디테일 정보도 같이 학습하여 영상 디테일을 향상하는 잡음 제거 합성곱 신경망 네트워크를 제안한다. 제안하는 네트워크는 디테일 향상 서브 네트워크(Detail Enhancement Subnetwork)와 영상 잡음 추출 서브 네트워크(Noise Extraction Subnetwork)를 이용하게 된다. 실험을 통해 제안하는 방법은 기존 알고리듬보다 디테일 손실 문제를 효과적으로 해결할 수 있었고 객관적 품질 평가인 PSNR(Peak Signal-to-Noise Ratio)와 주관적 품질 비교에서 모두 우수한 결과가 나온 것을 확인하였다.

  • PDF

A Merging Algorithm with the Discrete Wavelet Transform to Extract Valid Speech-Sounds (이산 웨이브렛 변환을 이용한 유효 음성 추출을 위한 머징 알고리즘)

  • Kim, Jin-Ok;Hwang, Dae-Jun;Paek, Han-Wook;Chung, Chin-Hyun
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.8 no.3
    • /
    • pp.289-294
    • /
    • 2002
  • A valid speech-sound block can be classified to provide important information for speech recognition. The classification of the speech-sound block comes from the MRA(multi-resolution analysis) property of the DWT(discrete wavelet transform), which is used to reduce the computational time for the pre-processing of speech recognition. The merging algorithm is proposed to extract valid speech-sounds in terms of position and frequency range. It needs some numerical methods for an adaptive DWT implementation and performs unvoiced/voiced classification and denoising. Since the merging algorithm can decide the processing parameters relating to voices only and is independent of system noises, it is useful for extracting valid speech-sounds. The merging algorithm has an adaptive feature for arbitrary system noises and an excellent denoising SNR(signal-to-nolle ratio).

A comprehensive study on active Lamb wave-based damage identification for plate-type structures

  • Wang, Zijian;Qiao, Pizhong;Shi, Binkai
    • Smart Structures and Systems
    • /
    • v.20 no.6
    • /
    • pp.759-767
    • /
    • 2017
  • Wear and aging associated damage is a severe problem for safety and maintenance of engineering structures. To acquire structural operational state and provide warning about different types of damage, research on damage identification has gained increasing popularity in recent years. Among various damage identification methods, the Lamb wave-based methods have shown promising suitability and potential for damage identification of plate-type structures. In this paper, a comprehensive study was presented to elaborate four remarkable aspects regarding the Lamb wave-based damage identification method for plate-type structures, including wave velocity, signal denoising, image reconstruction, and sensor layout. Conclusions and path forward were summarized and classified serving as a starting point for research and application in this area.

Image Denoising Using Bivariate Gaussian Model In Wavelet Domain (웨이블릿 영역에서 이변수 가우스 모델을 이용한 영상 잡음 제거)

  • Eom, Il-Kyu
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.45 no.6
    • /
    • pp.57-63
    • /
    • 2008
  • In this paper, we present an efficient noise reduction method using bivariate Gaussian density function in the wavelet domain. In our method, the probability model for the interstate dependency in the wavelet domain is modeled by bivariate Gaussian function, and then, the noise reduction is performed by Bayesian estimation. The statistical parameter for Bayesian estimation can be approximately obtained by the $H{\ddot{o}}lder$ inequality. The simulation results show that our method outperforms the previous methods using bivariate probability models.

Improvement of INS-GPS Integrated Navigation System using Wavelet Thresholding (웨이블릿 임계화 기법을 이용한 INS-GPS 결합항법 시스템의 성능향상)

  • Kang, Chul-Woo;Park, Chan-Gook;Cho, Nam-Ik
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.8
    • /
    • pp.767-773
    • /
    • 2009
  • This research have introduced wavelet signal processing technic for improving navigation signals. INS signals can be distorted with conventional pre-filtering method such as low-pass filtering by unwanted smoothing on real signals. But in this paper, wavelet thresholding method is implemented to INS signal to denoise for INS-GPS integrated system. This method reduces signal noise but not distorts the rapid varing signal. And this paper applied thresholding to INS-GPS integrated navigation system and improved navigation performance.

Introduction to Geophysical Exploration Data Denoising using Deep Learning (심층 학습을 이용한 물리탐사 자료 잡음 제거 기술 소개)

  • Caesary, Desy;Cho, AHyun;Yu, Huieun;Joung, Inseok;Song, Seo Young;Cho, Sung Oh;Kim, Bitnarae;Nam, Myung Jin
    • Geophysics and Geophysical Exploration
    • /
    • v.23 no.3
    • /
    • pp.117-130
    • /
    • 2020
  • Noises can distort acquired geophysical data, leading to their misinterpretation. Potential noises sources include anthropogenic activity, natural phenomena, and instrument noises. Conventional denoising methods such as wavelet transform and filtering techniques, are based on subjective human investigation, which is computationally inefficient and time-consuming. Recently, many researchers attempted to implement neural networks to efficiently remove noise from geophysical data. This study aims to review and analyze different types of neural networks, such as artificial neural networks, convolutional neural networks, autoencoders, residual networks, and wavelet neural networks, which are implemented to remove different types of noises including seismic, transient electromagnetic, ground-penetrating radar, and magnetotelluric surveys. The review analyzes and summarizes the key challenges in the removal of noise from geophysical data using neural network, while proposes and explains solutions to the challenges. The analysis support that the advancement in neural networks can be powerful denoising tools for geophysical data.

Image Denoising using an Asymmetric Analysis Filter in the Wavelet Domain (비대칭 분해 필터를 통한 웨이블릿 영역에서의 영상 잡음 제거)

  • 오준환;최창렬;정제창;김영섭
    • Proceedings of the IEEK Conference
    • /
    • 2003.07e
    • /
    • pp.1723-1726
    • /
    • 2003
  • 본 논문에서는 상세 부밴드에서의 PSNR과 웨이블릿 계수의 계층적 데이터 구조 측면에 초점을 맞추어 웨이블릿 영역에서의 신호 해석을 통한 잡음 제거를 연구하였다. 제안된 방식은 기존의 방식들과는 달리 수직 또는 수평 방향의 고주파 성분에 의한 상세 부밴드에서의 에너지 편중을 고려하여 이들의 에너지의 편중에 따른 분해 필터를 적응적으로 설계하고 부밴드의 에너지를 재분배시켜 성능을 향상 시켰으며, 웨이블릿 계수의 상호 의존성을 고려한 지역윈도우 사용해 기존의 방식을 개선하였다.

  • PDF

Mixture Distributions for Image Denoising in Wavelet Domain (웨이블릿 영역에서 혼합 모델을 사용한 영상 잡음 제거)

  • Bae, Byoung-Suk;Kang, Moon-Gi
    • Proceedings of the KIEE Conference
    • /
    • 2008.04a
    • /
    • pp.89-90
    • /
    • 2008
  • AWGN(Addictive white gaussian noise)에 의해 영상은 자주 훼손되곤 한다. 최근 이를 복원하기위해 웨이블릿(Wavelet) 영역에서의 베이시안(Bayesian) 추정법이 연구되고 있다. 웨이블릿 변환된 영상 신호의 밀도 함수(pdf)는 표족한 첨두와 긴 꼬리(long-tail)를 갖는 경망이 있다. 이러한 사전 밀도 함수(a priori probability density function)를 상황에 적합하게 추정한다면 좋은 성능의 복원 결과를 얻을 수 있다. 빈번이 제안되는 릴도 함수로 가우시안(Gaussian) 분포 참수와 라플라스(Laplace) 분포 함수가 있다. 이들 각각의 모델은 훌륭히 변환 계수들을 모델링하며 나름대로의 장점을 나타낸다. 본 연구에서는 가우시안 분포와 라플라스(Laplace) 분포의 혼합 분포 모델을 밀도 함수로 제안하여, 이 들의 장점을 종합하였다. 이를 MAP(Maximum a Posteriori) 추정 방법에 적용하여 잡음을 제거 하였다. 그 결과 기존의 알고리즘에 비해 시각적인 면(Visual aspect), 수치적인 면(PSNR), 그리고 연산량(Complexity) 측면에서 망상된 결과를 얻었다.

  • PDF

Adaptive Wavelet Denoising For Speech Rocognition in Car Interior Noise

  • Kim, E. Jae;Yang, Sung-Il;Kwon, Y.;Jarng, Soon S.
    • The Journal of the Acoustical Society of Korea
    • /
    • v.21 no.4E
    • /
    • pp.178-182
    • /
    • 2002
  • In this paper, we propose an adaptive wavelet method for car interior noise cancellation. For this purpose, we use a node dependent threshold which minimizes the Bayesian risk. We propose a noise estimation method based on spectral entropy using histogram of intensity and a candidate best basis instead of Donoho's best bases. And we modify the hard threshold function. Experimental results show that the proposed algorithm is more efficient, especially to heavy noisy signal than conventional one.