• Title/Summary/Keyword: Wavelet and Haar Transform

Search Result 50, Processing Time 0.026 seconds

Fingerprint Classification and Identification Using Wavelet Transform and Correlation (웨이블릿변환과 상관관계를 이용한 지문의 분류 및 인식)

  • 이석원;남부희
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.5
    • /
    • pp.390-395
    • /
    • 2000
  • We present a fingerprint identification algorithm using the wavelet transform and correlation. The wavelet transform is used because of its simple operation to extract fingerprint minutiaes features for fingerprint classification. We perform the rowwise 1-D wavelet transform for a $256\times256$ fingerprint image to get a $1\times256$ column vector using the Haar wavelet and repeat 1-D wavelet transform for a 1$\times$256 column vector to get a $1\times4$ feature vector. Using PNN(Probabilistic Neural Network), we select the possible candidates from the stored feature vectors for fingerprint images. For those candidates, we compute the correlation between the input binary image and the target binary image to find the most similar fingerprint image. The proposed algorithm may be the key to a low cost fingerprint identification system that can be operated on a small computer because it does not need a large memory size and much computation.

  • PDF

Time Delay Estimation using Wavelet Transform (웨이블릿 변환을 이용한 시간 지연 추정법)

  • Kim Doh-Hyoung;Park Youngjin
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • spring
    • /
    • pp.165-168
    • /
    • 2000
  • A fast estimation method using wavelet transform for a time delay system is proposed. Main point of this method is to get the wavelet transform of the correlation between the input signal and delayed signal using transformed signals. But wavelet transform using Haar wavelet functions has basis with different phases and can offers a bisection method to estimate a time delay of a signal. Selective computation of the transform of correlation is performed and the computational complexity is reduced. Computational order of this method is O(N log N) and it is much love. than a simple correlation esimation when the length of signal is long.

  • PDF

Wavelet Pair Noise Removal for Increasing the Classification Accuracy of a Remotely Sensed Image

  • Jin, Hong-Sung;Yoo, Hee-Young;Eom, Joo-Young;Choi, II-Su;Han, Dong-Yeob
    • Korean Journal of Remote Sensing
    • /
    • v.25 no.3
    • /
    • pp.215-223
    • /
    • 2009
  • The noise removal as a preprocessing was tried with various kinds of wavelet pairs. Wavelet transform for 2D images generally uses the same wavelets as basis functions in horizontal and vertical directions. A method with different wavelets was tried for each direction separately, which gives more precise interpretation of the classification. Total 486 pairs of wavelets from nine basis functions were tried to remove image noises. The classification accuracies before and after the noise removal were compared. Although all kinds of wavelet pairs showed the increased accuracies in classification, there were best and worst wavelet pairs depending on the data sets. Wavelet pairs with low energy percentage of LL band showed the high classification accuracy. A pattern was found in the results that very similar vertical accuracy was distributed for each horizontal ones. Since Haar is the shortest length filter, Haar could be a predictor wavelet to find the good wavelet pairs.

Optimizing Wavelet in Noise Canceler by Deep Learning Based on DWT (DWT 기반 딥러닝 잡음소거기에서 웨이블릿 최적화)

  • Won-Seog Jeong;Haeng-Woo Lee
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.1
    • /
    • pp.113-118
    • /
    • 2024
  • In this paper, we propose an optimal wavelet in a system for canceling background noise of acoustic signals. This system performed Discrete Wavelet Transform(DWT) instead of the existing Short Time Fourier Transform(STFT) and then improved noise cancellation performance through a deep learning process. DWT functions as a multi-resolution band-pass filter and obtains transformation parameters by time-shifting the parent wavelet at each level and using several wavelets whose sizes are scaled. Here, the noise cancellation performance of several wavelets was tested to select the most suitable mother wavelet for analyzing the speech. In this study, to verify the performance of the noise cancellation system for various wavelets, a simulation program using Tensorflow and Keras libraries was created and simulation experiments were performed for the four most commonly used wavelets. As a result of the experiment, the case of using Haar or Daubechies wavelets showed the best noise cancellation performance, and the mean square error(MSE) was significantly improved compared to the case of using other wavelets.

A Scale Invariant Object Detection Algorithm Using Wavelet Transform in Sea Environment (해양 환경에서 웨이블렛 변환을 이용한 크기 변화에 무관한 물표 탐지 알고리즘)

  • Bazarvaani, Badamtseren;Park, Ki Tae;Jeong, Jongmyeon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.23 no.3
    • /
    • pp.249-255
    • /
    • 2013
  • In this paper, we propose an algorithm to detect scale invariant object from IR image obtained in the sea environment. We create horizontal edge (HL), vertical edge (LH), diagonal edge (HH) of images through 2-D discrete Haar wavelet transform (DHWT) technique after noise reduction using morphology operations. Considering the sea environment, Gaussian blurring to the horizontal and vertical edge images at each level of wavelet is performed and then saliency map is generated by multiplying the blurred horizontal and vertical edges and combining into one image. Then we extract object candidate region by performing a binarization to saliency map. A small area in the object candidate region are removed to produce final result. Experiment results show the feasibility of the proposed algorithm.

A Method for the Increasing Efficiency of the Watershed Based Image Segmentation using Haar Wavelet Transform (Haar 웨이블릿 변환을 사용한 Watershed 기반 영상 분할의 효율성 증대를 위한 기법)

  • 김종배;김항준
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.40 no.2
    • /
    • pp.1-10
    • /
    • 2003
  • This paper presents an efficient method for image segmentation based on a multiresolution application of a wavelet transform and watershed segmentation algorithm. The procedure toward complete segmentation consists of four steps: pyramid representation, image segmentation, region merging and region projection. First, pyramid representation creates multiresolution images using a wavelet transform. Second, image segmentation segments the lowest-resolution image of the pyramid using a watershed segmentation algorithm. Third, region merging merges the segmented regions using the third-order moment values of the wavelet coefficients. Finally, the segmented low-resolution image with label is projected into a full-resolution image (original image) by inverse wavelet transform. Experimental results of the presented method can be applied to the segmentation of noise or degraded images as well as reduce over-segmentation.

Haar Wavelet Transform Preprocessing Technique to Face Recognition of PCA, LDA (Haar Wavelet Transform 전처리 기법을 적용한 PCA, LDA기법의 얼굴 인식)

  • Lee Dong-Hun
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.11b
    • /
    • pp.832-834
    • /
    • 2005
  • 얼굴 인식을 위한 주요 기법인 PCA, LDA에 의한 mapping기법은 조명조건의 미세한 변화에 민감한 특성을 가진다. 얼굴 인식 연구에 있어서 인식률의 향상뿐만 아니라 실용적인 얼굴 인식 시스템을 구현하기 위해서는 조명 변화를 최소화 시키는 전처리 과정이 중요한 고려사항이다. 따라서 본 논문에서는 조명의 변화를 최소화 할 수 있는 전처리 방법으로 Haar 웨이블렛 변환으로 얻어진 웨이블렛 계수공간의 조정 후 역변환을 통한 영상향상을 제안한다. 실험 결과 제안한 방법은 기존의 전처리 방법으로 널리 쓰이는 히스토그램 평활화 방법에 비해 우수한 성능을 나타내었을 뿐만 아니라 메모리 절감효과에 따른 처리속도 증가를 보였다.

  • PDF

Real-Time Head Tracking using Adaptive Boosting in Surveillance (서베일런스에서 Adaptive Boosting을 이용한 실시간 헤드 트래킹)

  • Kang, Sung-Kwan;Lee, Jung-Hyun
    • Journal of Digital Convergence
    • /
    • v.11 no.2
    • /
    • pp.243-248
    • /
    • 2013
  • This paper proposes an effective method using Adaptive Boosting to track a person's head in complex background. By only one way to feature extraction methods are not sufficient for modeling a person's head. Therefore, the method proposed in this paper, several feature extraction methods for the accuracy of the detection head running at the same time. Feature Extraction for the imaging of the head was extracted using sub-region and Haar wavelet transform. Sub-region represents the local characteristics of the head, Haar wavelet transform can indicate the frequency characteristics of face. Therefore, if we use them to extract the features of face, effective modeling is possible. In the proposed method to track down the man's head from the input video in real time, we ues the results after learning Harr-wavelet characteristics of the three types using AdaBoosting algorithm. Originally the AdaBoosting algorithm, there is a very long learning time, if learning data was changes, and then it is need to be performed learning again. In order to overcome this shortcoming, in this research propose efficient method using cascade AdaBoosting. This method reduces the learning time for the imaging of the head, and can respond effectively to changes in the learning data. The proposed method generated classifier with excellent performance using less learning time and learning data. In addition, this method accurately detect and track head of person from a variety of head data in real-time video images.

Random Partial Haar Wavelet Transformation for Single Instruction Multiple Threads (단일 명령 다중 스레드 병렬 플랫폼을 위한 무작위 부분적 Haar 웨이블릿 변환)

  • Park, Taejung
    • Journal of Digital Contents Society
    • /
    • v.16 no.5
    • /
    • pp.805-813
    • /
    • 2015
  • Many researchers expect the compressive sensing and sparse recovery problem can overcome the limitation of conventional digital techniques. However, these new approaches require to solve the l1 norm optimization problems when it comes to signal reconstruction. In the signal reconstruction process, the transform computation by multiplication of a random matrix and a vector consumes considerable computing power. To address this issue, parallel processing is applied to the optimization problems. In particular, due to huge size of original signal, it is hard to store the random matrix directly in memory, which makes one need to design a procedural approach in handling the random matrix. This paper presents a new parallel algorithm to calculate random partial Haar wavelet transform based on Single Instruction Multiple Threads (SIMT) platform.

A Comparative Study of 3D DWT Based Space-borne Image Classification for Differnet Types of Basis Function

  • Yoo, Hee-Young;Lee, Ki-Won;Kwon, Byung-Doo
    • Korean Journal of Remote Sensing
    • /
    • v.24 no.1
    • /
    • pp.57-64
    • /
    • 2008
  • In the previous study, the Haar wavelet was used as the sole basis function for the 3D discrete wavelet transform because the number of bands is too small to decompose a remotely sensed image in band direction with other basis functions. However, it is possible to use other basis functions for wavelet decomposition in horizontal and vertical directions because wavelet decomposition is independently performed in each direction. This study aims to classify a high spatial resolution image with the six types of basis function including the Haar function and to compare those results. The other wavelets are more helpful to classify high resolution imagery than the Haar wavelet. In overall accuracy, the Coif4 wavelet has the best result. The improvement of classification accuracy is different depending on the type of class and the type of wavelet. Using the basis functions with long length could be effective for improving accuracy in classification, especially for the classes of small area. This study is expected to be used as fundamental information for selecting optimal basis function according to the data properties in the 3D DWT based image classification.