• Title/Summary/Keyword: Wavelet Analysis

Search Result 1,058, Processing Time 0.042 seconds

Analysis of Ringing by Continuous Wavelet (연속 웨이브렛에 의한 Ringing현상 해석)

  • 권순홍;이형석;하문근
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2000.10a
    • /
    • pp.118-122
    • /
    • 2000
  • In this study, Ringing is investigated by continuous wavelet transform. Ringing is considered to be one of the typical transient phenomena in the field of ocean engineering. The wavelet analysis is adopted to analyze ringing from the point that wavelet analysis is capable of frequency analysis as well as time domain analysis. The use mother wavelet is the Morlet wavelet. The relation between the frequency of the time series and that of wavelet can be clearly defined with Mor1et wavelet. Experimental data obtained by other researchers was used. The wave height time series and acceleration times series of the surface piercing cylinder were analyzed. The results show that the proposed scheme can detect typical frequency region by the time domain analysis which could hardly be detected if one relied on the frequency analysis.

  • PDF

A Study on the Application of Wavelet Transform to Faults Current Discrimination (Wavelet 변환을 이용한 고장전류의 판별에 관한 연구)

  • 조현우;정종원;윤기영;김태우;이준탁
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2002.05a
    • /
    • pp.213-217
    • /
    • 2002
  • Recently the subject of "wavelet analysis" has be drawn by both mathematical and engineering application fields such as Signal Processing, Compression/Decomposition, Wavelet-Neural Network, Statistics and etc. Even though its similar to courier analysis, wavelet is a versatile tool with much mathematical content and great potential for applications. Especially, wavelet transform uses localizable various mother wavelet functions in time-frequency domain. Therefore, wavelet transform has good time-analysis ability for high frequency component, and has good frequency-analysis ability for low frequency component. Using the discriminative ability is more easy method than other conventional techniques. In this paper, Morlet wavelet transform was applied to discriminate the kind of line fault by acquired data from real power transformation network. The experimental result presented that Morlet wavelet transform is easier, and more useful method than the FFW (Fast courier Transform).ransform).

  • PDF

A Study on Suppression of Ultrasonic Background Noise Signal using wavelet Transform (Wavelet변환을 이용한 초음파 잡음신호의 제거에 관한 연구)

  • 박익근
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.8 no.1
    • /
    • pp.135-141
    • /
    • 1999
  • Recently, advance signal analysis which is called "Time-Frequency Analysis" has been developed. Wavelet and Wigner Distribution are used to the method. Wavelet transform(WT) is applied to time-frequency analysis of waveforms obtained by an ultrasonic pulse-echo technique. The Gabor function is adopted as the analyzing wavelet. Wavelet analysis method is an attractive technique for evolution of material characterization evoluation. In this paper, the feasibility of suppression of ultrasonic background noise signal using WT has been presented. These results suggest that ultrasonic background noise ginal can be suppressed and enhanced even for SNR of 20.8 dB. This property of the WT is extremely useful for the detecting flaw echos embedded in background noise.und noise.

  • PDF

Retrieving Phase from Single Interferogram with Spatial Carrier Frequency by Using Morlet Wavelet

  • Hongxin Zhang;Mengyuan Cui
    • Current Optics and Photonics
    • /
    • v.7 no.5
    • /
    • pp.529-536
    • /
    • 2023
  • The Morlet wavelet transform method is proposed to analyze a single interferogram with spatial carrier frequency that is captured by an optical interferometer. The method can retain low frequency components that contain the phase information of a measured optical surface, and remove high frequency disturbances by wavelet decomposition and reconstruction. The key to retrieving the phases from the low-frequency wavelet components is to extract wavelet ridges by calculating the maximum value of the wavelet transform amplitude. Afterwards, the wrapped phases can be accurately solved by multiple iterative calculations on wavelet ridges. Finally, we can reconstruct the wave-front of the measured optical element by applying two-dimensional discrete cosine transform to those wrapped phases. Morlet wavelet transform does not need to remove the spatial carrier frequency components manually in the processing of interferogram analysis, but the step is necessary in the Fourier transform algorithm. So, the Morlet wavelet simplifies the process of the analysis of interference fringe patterns compared to Fourier transform. Consequently, wavelet transform is more suitable for automated programming analysis of interference fringes and avoiding the introduction of additional errors compared with Fourier transform.

Faults Current Discrimination of Power System Using Wavelet Transform (웨이블렛 변환을 이용한 전력시스템 고장전류의 판별)

  • Lee, Joon-Tark;Jeong, Jong-Won
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.3
    • /
    • pp.75-81
    • /
    • 2007
  • Recently the subject of "wavelet analysis" has be drawn by both mathematical and engineering application fields such as Signal Processing, Compression/Decomposition, Wavelet-Neural Network, Statistics and etc. Even though its similar to Fourier analysis, wavelet is a versatile tool with much mathematical content and great potential for applications. Especially, wavelet transform uses localizable various mother wavelet functions in time-frequency domain. Therefore, wavelet transform has good time-analysis ability for high frequency component, and has good frequency-analysis ability for low frequency component. Using the discriminative ability is more easy method than other conventional techniques. In this paper, Morlet wavelet transform was applied to discriminate the kind of line fault by acquired data from real power transformation network. The experimental result presented that Morlet wavelet transform is easier, and more useful method than the Fast Fourier Transform(FFT).

Landscape pattern analysis from IKONOS image data by wavelet and semivariogram method

  • Danfeng, Sun;Hong, Li
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1209-1211
    • /
    • 2003
  • The wavelet and semivariogram analysis method are used to identify the city landscape and farmland landscape pattern on the 1m resolution IKONOS images. The results prove that wavelet method is a potential way for landscape pattern analysis. Compared to semivariogram analysis, Wavelet analysis can not only detect the overall spatial pattern, but also find multi-scale and direction structures. In this experiment, the wavelet analysis results indicate: (1) the city landscape image is mainly composed of three level structures whose spatial pattern characters appear at 2m, 16m, 128m and 256m accordingly; (2) the farmland landscape is mainly two scale spatial patterns appearing at the 2m, 128m and 256m. IKONOS Remote sensing, with the high spatial and spectral information, is a powerful tool that can use in many ecological systems research and sustainable management.

  • PDF

A Study on the Application of Wavelet Transform to Faults Current Discrimination (Wavelet 변환을 이용한 고장 전류의 판별에 관한 연구)

  • Jeong, Jong-Won;Jo, Hyun-Woo;Kim, Tae-Woo;Lee, Joon-Tark
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2002.12a
    • /
    • pp.427-430
    • /
    • 2002
  • Recently the subject of "wavelet analysis" has be drawn by both mathematical and engineering application fields such as Signal Processing, Compression/Decomposition, Wavelet-Neural Network, Statistics and etc. Even though its similar to Fourier analysis, wavelet is a versatile tool with much mathematical content and great potential for applications. Especially, wavelet transform uses localizable various mother wavelet functions in time-frequency domain. Therefore, wavelet transform has good time-analysis ability for high frequency component, and has good frequency-analysis ability for low frequency component. Using the discriminative ability is more easy method than other conventional techniques. In this paper, Morlet wavelet transform was applied to discriminate the kind of line fault by acquired data from real power transformation network. The experimental result presented that Morlet wavelet transform is easier,and more useful method than the FFT (Fast Fourier Transform).

Earthquake time-frequency analysis using a new compatible wavelet function family

  • Moghaddam, Amir Bazrafshan;Bagheripour, Mohammad H.
    • Earthquakes and Structures
    • /
    • v.3 no.6
    • /
    • pp.839-852
    • /
    • 2012
  • Earthquake records are often analyzed in various earthquake engineering problems, making time-frequency analysis for such records of primary concern. The best tool for such analysis appears to be based on wavelet functions; selection of which is not an easy task and is commonly carried through trial and error process. Furthermore, often a particular wavelet is adopted for analysis of various earthquakes irrespective of record's prime characteristics, e.g. wave's magnitude. A wavelet constructed based on records' characteristics may yield a more accurate solution and more efficient solution procedure in time-frequency analysis. In this study, a low-pass reconstruction filter is obtained for each earthquake record based on multi-resolution decomposition technique; the filter is then assigned to be the normalized version of the last approximation component with respect to its magnitude. The scaling and wavelet functions are computed using two-scale relations. The calculated wavelets are highly efficient in decomposing the original records as compared to other commonly used wavelets such as Daubechies2 wavelet. The method is further advantageous since it enables one to decompose the original record in such a way that a clear time-frequency resolution is obtained.

A Study of Relationships between the Sea Surface Temperatures and Rainfall in Korea (해수면온도와 우리나라 강우량과의 상관성 분석)

  • Moon Young-Il;Kwon Hyun-Han;Kim Dong-Kwon
    • Journal of Korea Water Resources Association
    • /
    • v.38 no.12 s.161
    • /
    • pp.995-1008
    • /
    • 2005
  • In this study, the principal components of rainfall in Korea are extracted by a method which consists of the independent component analysis combined with the wavelet transform, to examine the spatial correlation between seasonal rainfalls and global sea surface temperatures (SSTs). The 2-8 year band retains a strong wavelet power spectrum and the low frequency characteristics are shown by the wavelet analysis. The independent component analysis is performed by using the Scale Average Wavelet Power(SAWP) that is estimated by wavelet analysis. Interannual-interdecadal variation is the dominant variation, and an increasing trend is observed in the spring and summer seasons. The relationships between principal components of rainfall in the spring/summer seasons and SSTs existed in Indian and Pacific Oceans. Particularly, the SST zones, which represent a statistically significant correlation are located in the Philippine offshore and Australia offshore. Also, the three month leading SSTs in the same region we strongly correlated with the rainfall. Hence, these results propose a promising possibility of seasonal rainfall prediction by SST predictors.

Analysis of 2-Dimensional Object Recognition Using discrete Wavelet Transform (이산 웨이브렛 변환을 이용한 2차원 물체 인식에 관한 연구)

  • Park, Kwang-Ho;Kim, Chang-Gu;Kee, Chang-Doo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.10
    • /
    • pp.194-202
    • /
    • 1999
  • A method for pattern recognition based on wavelet transform is proposed in this paper. The boundary of the object to be recognized includes shape information for object of machine parts. The contour is first represented using a one-dimensional signal and normalized about translation, rotation and scale, then is used to build the wavelet transform representation of the object. Wavelets allow us to decompose a function into multi-resolution hierarchy of localized frequency bands. The recognition of 2-dimensional object based on the wavelet is described to analyze the shape of analysis technique; the discrete wavelet transform(DWT). The feature vectors obtained using wavelet analysis is classified using a multi-layer neural network. The results show that, compared with the use of fourier descriptors, recognition using wavelet is more stable and efficient representation. And particularly the performance for objects corrupted with noise is better than that of other method.

  • PDF