• Title/Summary/Keyword: Wavelength width

Search Result 316, Processing Time 0.024 seconds

The Operation Characteristic of the LED Taxi Light for Wavelength According to Meteorological Changes for Hybrid System Using a ESS (하이브리드 시스템의 ESS를 이용한 기상변화의 파장별 LED 항공유도등 동작특성)

  • Hwang, Lark-Hoon;Kim, Jin-Sun;Na, Yong- Ju
    • Journal of Advanced Navigation Technology
    • /
    • v.20 no.4
    • /
    • pp.265-274
    • /
    • 2016
  • In this study, the system was composed of the booster chopper and the power converter, which is a pulse width modulation (PWM) voltage inverter using a hybrid power generation system solar cell energy and wind force, Furthermore, in order to compensate the PWM voltage type inverter was linked with the general commercial power source, and through a normal operation of energy storage system (ESS), the system operated the LED Taxi Light by Wavelength according to Meteorological Changes at the airport in an efficient manner. The performance of the system was compared with the solar cell characteristics specification. In addition, for phase synchronization with the PWM voltage type inverter, the grid voltage was detected so as to operate the grid voltage and inverter output in the same phase and to connect the surplus electric power with the system. Finally, by developing a control circuit at the same time from which an excellent dynamic characteristics can be obtained through applying to the airport runway taxi light, it was concluded that a variety of taxi light can be pursued.

Power extraction efficiency and lasing wavelength distribution of complex-coupled DFB lasers for various facet reflectivity combinations and coupling coefficient ratios (양 단면 반사율 조합과 결합 계수 비에 따른 Complex-Coupled DFB 레이저 다이오드의 파워 추출 효율과 발진 파장 분포)

  • 김상택;김부균
    • Korean Journal of Optics and Photonics
    • /
    • v.15 no.2
    • /
    • pp.149-157
    • /
    • 2004
  • We have calculated the power extraction efficiency and the lasing wavelength distribution of complex-coupled(CC) DFB lasers above threshold for various|$\chi$L| and facet reflectivity combinations, and we have compared the results with those at threshold. Also, we have investigated the effect of coupling coefficient ratio(CR) and the reflectivity of AR facet on the power extraction efficiency and the lasing wavelength distribution. At threshold, the single mode yield as a function of power extraction efficiency of in-phase(IP) CC DFB lasers is the same as that of anti-phase(AP) CC DFB lasers. Above threshold, however, the single mode yield as a function of power extraction efficiency of IP CC DFB lasers is much larger than that of AP CC DFB lasers. For IP CC DFB lasers, AR-HR combination has high single mode yield and large power extraction efficiency compared to other facet combinations. IP CC DFB laser with AR-HR combination for |$\chi$L|of 0.8 has the highest single mode yield and largest power extraction efficiency above threshold among the cases considered. For AR-HR combination, as CR increases and the reflectivity of AR facet decreases, both single mode yield and power extraction efficiency increase due to the reduction of the spatial hole burning effect. For AR-HR combination, the lasing wavelength of CC DFB laser has distributed over the stopband of DFB. As CR increases, the lasing wavelength concentrates on the long wavelength side for IP CC DFB laser, while on the short wavelength side for AP CC DFB laser. As |$\chi$L| increases, the width of the wavelength distribution decreases and the lasing wavelength moves to the long wavelength side.

Laser scribing for buried contact solar cell processing (전극함몰형 태양전지의 제조를 위한 레이저 scribing)

  • 조은철;조영현;이수홍
    • Electrical & Electronic Materials
    • /
    • v.9 no.6
    • /
    • pp.593-599
    • /
    • 1996
  • Laser scribing of silicon plays an important role in metallization including the grid pattern and the front surface geometry which means aspect ratio of metal contacts. To make a front metal electrode of buried contact solar cell, we used ND:YAG lasers that deliver average 3-4W at TEM$\_$00/ mode power to sample stage. The Q-switched Nd:YAG laser of 1.064 gm wavelength was used for silicon scribing with 20-40.mu.m width and 20-200.mu.m depth capabilities. After silicon slag etching, the groove width and depth for buried contact solar cell are -20.mu.m and 30-50.mu.m respectively. Using MEL 40 Nd:YAG laser system, we can scribe the silicon surface with 18-23.mu.m width and 20-200.mu.m depth controlled by krypton arc lamp power, scan speed, pulse frequency and beam focusing. We fabricated a buried contact Silicon Solar Cell which had an energy conversion efficiency of 18.8 %. In this case, the groove width and depth are 20.mu.m and 50.mu.m respectively.

  • PDF

A Study on Water Droplet Lens Effect of UV Laser Micromachining Process (UV 레이저 미세 가공공정에서의 물 액적 렌즈 효과에 관한 연구)

  • Shin, Bo-Sung;Lee, Jung-Han
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.5
    • /
    • pp.773-777
    • /
    • 2012
  • Recently UV laser micromachining processes is widely introduced to meet the needs of advanced components of IT, BT and ET industries. Due to the characteristics of non-contact and high-speed laser processing, UV laser micromachining is applied to manufacture very thin substrate such as polymer, metals and composite. These minimum line width obtained by UV laser micromachining is generally determined from laser wavelength, optical lens and its numerical aperture. In this paper we will show the lens effect of water droplet on the surface of workpiece to reduce the line width when UV laser light is irradiated and focused through the water droplet. Because of the refraction effect generated by the semi-spherical or spherical shape of water droplet, we can find smaller line width. And water droplet could not only protect thermal deformation, but also carry away burr around micro dent. Firstly fundamental theory of minimum line width was derived from relationship between the geometry of water droplet and laser light trace, and then experimental and simulation results will be finally compared to verify the effectiveness of water droplet lens effect of UV laser micromachining process.

A Study of Microstrip Line Fed QMSA Characteristics (마이크로스트립 라인 급전 QMSA의 특성 연구)

  • Kim, Eun-Yong;Park, Ok-Dong;Ryu, Hyun;Lee, Nam-Yul;Park, Sung-Kyo;Park, Chong-Baek
    • Proceedings of the IEEK Conference
    • /
    • 1999.06a
    • /
    • pp.861-864
    • /
    • 1999
  • We designed and fabricated microstrip line fed QMSAs(Quarter-Wavelength Microstrip Antenna) for 850〔MHz〕 band on the CGP-500 Copper-clad Laminates substrate (CHUKOH company) with $\varepsilon$$_{r}$=2.6, H=1.6〔mm〕( $\pm$0.08), where the width of the radiation patch is identical with that of the ground plane. The resonant frequencies and the return losses were measured by reducing the PSW(Partially Shorted Width) to 0〔mm〕, step by step, when the microstrip line width was 1.47〔mm〕, 2.93〔mm〕and 4.4〔mm〕separately. As a result, a good characterized antenna with a 11% reduced resonant length and a return loss -29.44〔㏈〕 was obtained when the total PSW was in the range of 70% of radiated patch width, compared to the conventional QMSA.A.

  • PDF

Gravure Halftone Dots by Laser Direct Patterning

  • Jeong Suh;Lee, Jae-Hoon
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.3 no.1
    • /
    • pp.26-32
    • /
    • 2002
  • Laser direct patterning of the coated photoresist (PMER-NSG31B) layer was studied to make halftone dots on the gravure printing roll. The selective laser hardening of the photoresist by Ar-ion laser(wavelength: 333.6∼363.8 nm) was controlled by the A/O modulator. The coating thickness in the range of 5∼11㎛ could be obtained by using the up-down directional moving device along the vertically located roll. The width, thickness and hardness of the hardened lines farmed under the laser power of 200∼260mW and irradiation time of 4.4∼6.6 $\mu$ sec/point were investigated after developing. The hardened width increased as the coating thickness increased. Though the hardened thickness was changed due to the effect of the developing solution, the hardened layer showed good resistance to the scratching of 2H pencil. Also, the hardened minimum line width of 10㎛ could be obtained. The change of line width was also found after etching, and the minimum line widths of 6㎛ could be obtained. The hardened lines showed the good resistance to the etching solution. Finally, the experimental data could be applied to make gravure halftone dots using the developed imaging process, successfully.

A Study of Weld Pool width Control in Gas Tungsten Arc Welding Using the Digital Image Processing (화상처리에 의한 Gas Tungsten Arc 용접에서의 용융지폭제어에 관한 연구)

  • Kim, Dong-Cheol;Rhee, Sehun;Um, Ki-Woan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.9
    • /
    • pp.2760-2769
    • /
    • 1996
  • The feedback control systems of welding process using visual information can improve weld qualities. However, it is very difficult to get the visual information of weld pool since the light intensity of welding arc is much stronger than that of the weld pool. To explore the possibility of extending the capability of automatic welding machines, a study of a closed loop controlled welding system consisted of a GTA welding machine, a vision system, a stepping motor system and a digital computer was undertaken. Particularly, in this system, a CCD camera with a long wavelength pass filter was used to get a better weld pool image. Subsequently, an image analysis technique has been developed to measure the weld pool width. Using this weld pool width measurement, a colsed loop control system adjusted welding speed to maintain a constant weld pool width.

A Study of Low-k Wafer Engraving Processes by Using Laser with Pico-second Pulse Width (자외선 피코초 레이저를 이용한 Low-k 웨이퍼 인그레이빙 특성에 관한 연구)

  • Moon, Seong-Wook;Bae, Han-Seong;Hong, Yun-Suk;Nam, Gi-Jung;Kwak, No-Heung
    • Journal of the Semiconductor & Display Technology
    • /
    • v.6 no.1 s.18
    • /
    • pp.11-15
    • /
    • 2007
  • Low-k wafer engraving process has been investigated by using UV pico-second laser with high repetition rate. Wavelength and repetition rate of laser used in this study are 355 nm and 80 MHz, respectively. Main parameters of low-k wafer engraving processes are laser power, work speed, assist gas flow, and protective coating to eliminate debris. Results show that engraving qualities of low-k layer by using a laser with UV pico-second pulse width and high repetition rate had better kerf edge and higher work speed, compared to one by conventional laser with nano-second pulse width and low repletion rate in the range of kHz. Assist gas and protective coating to eliminate debris gave effects on the quality of engraving edge. Total engraving width and depth are obtained less than $20\;{\mu}m$ and $10\;{\mu}m$ at more than 500 mm/sec work speed, respectively. We believe that engraving method by using UV pico-second laser with high repetition rate is useful one to give high work speed in laser material process.

  • PDF

Tunable Wavelength Filters Based on Long-Range Surface-Plasmon-Polariton waveguides (금속선 광 도파로를 이용한 장거리 표면-플라즈몬 파장가변 필터)

  • Kim, Ki-Cheol;Song, Seok-Ho;Won, Hyong-Sik;Lee, Gwan-Su
    • Korean Journal of Optics and Photonics
    • /
    • v.17 no.4
    • /
    • pp.371-380
    • /
    • 2006
  • We design and fabricate a novel tunable wavelength filter, which utilizes long-range surface plasmon-polaritons excited along nm-thick-metal strips. A gold metal strip, with $\sim$ cm length, 20 nm thickness, and $\sim$ 5$\mu$m width, is embedded in thick thermo-optic Polymer films supported by a silicon wafer. A dielectric Bragg grating structure is Placed on the metal strip, so that transmission signals at telecom wavelength are selected by thermal effect of the thermo-optic polymer. High extinction ratio of 25 dB and total insertion loss of $\sim$25 dB/cm can be measured by single-mode coupling of optical fibers. We also verify that wavelength tuning of the long-range surface plasmon-polariton filters can be achieved by electric current directly applied to the metal-strip waveguides.

Nanoscale Patterning Using Femtosecond Laser and Self-assembled Monolayers (SAMs) (펨토초레이저와 자기조립박막을 이용한 나노스케일 패터닝)

  • Chang, Won-Seok;Choi, Moo-Jin;Kim, Jae-Gu;Cho, Sung-Hak;Whang, Kyung-Hyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.9
    • /
    • pp.1270-1275
    • /
    • 2004
  • Standard positive photoresist techniques were adapted to generate nano-scale patterns of gold substrate using self-assembled monolayers (SAMs) and femtosecond laser. SAMs formed by the adsorption of alkanethiols onto gold substrate are employed as very thin photoresists, Alkanethiolates formed by the adsorption of alkanethiols are oxidized on exposure to UV light in the presence of air to alkylsulfonates. Specifically, it is known that deep UV light of wavelength less than 200nm is necessary for oxidation to occur. In this study, ultrafast laser of wavelength 800nm and pulse width 200fs is applied for photolithography. Results show that ultrafast laser of visible range wavelength can replace deep UV laser source for photo patterning using thin organic films. Femtosecond laser coupled near-field scanning optical microscopy facilitates not only the patterning of surface chemical structure, but also the creation of three-dimensional nano-scale structures by combination with suitable etching methods.