• Title/Summary/Keyword: Wavelength division multiplexed

Search Result 73, Processing Time 0.018 seconds

Performance Improvement of WDM Signals through Precompensation and Postcompensation in Dispersion Managed Optical Transmission Links with Artificial Distribution of Single Mode Fiber Length and RDPS (인위적인 단일 모드 광섬유 길이와 RDPS 분포를 갖는 분산 제어 광전송 링크에서 선치 보상과 후치 보상을 통한 WDM 신호의 성능 개선)

  • Lee, Seong-Real
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.10
    • /
    • pp.2293-2302
    • /
    • 2012
  • New optical transmission links technique for compensating of the distorted wavelength division multiplexed (WDM) signals due to group velocity dispersion (GVD) and self phase modulation (SPM) in single mode fiber (SMF) are proposed. The proposed optical links have optical phase conjugator (OPC) placed at nearby WDM transmitter or receiver and repeater spans with artificial distribution of SMF length and residual dispersion per span (RDPS). It is confirmed that optimal link configuration expanding effective launching power range and effective net residual dispersion (NRD) by improving system performance is that having OPC closely placed at WDM receiver and the gradually descended distribution of SMF length and RDPS of each repeater spans, related with the gradually increased optical link length. And, it is also confirmed that NRD is controlled by postcompensation in optimal optical link with OPC closely placed at WDM receiver.

1.6 Tb/s (160x10 Gb/s) WDM Transmission over 2,000 km of Single Mode Fiber (1.6 Tb/s (160x10 Gb/s) WDM 신호의 단일 모드 광섬유 2,000 km 전송)

  • 한진수;장순혁;이현재
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.7A
    • /
    • pp.712-718
    • /
    • 2004
  • We report 1.6 Tb/s (160${\times}$10 Gb/s) WDM transmission over 2,000 km of single mode fiber using distributed hybrid(distributed Raman amplifier+Erbium-doped fiber amplifier) optical amplifiers. After transmission over 2,000 km of single mode fiber, average optical signal to noise ratios of C/L-band were 20.5 dB, 21.9 dB, respectively. The minimum Q-factors of each band were 14.65 dB (BER=5.8e-8) in C-band, 13.75 dB (BER=5.0e-7) in L-band without forward error correction. We performed 1.6 Tb/s error-free transmission over 2,000 km of single mode fiber using Reed-Solomon (255, 239) forward error correction code.

Improvement of System Performance Through Concentrated RDPS in WDM Transmission Links with Dispersion Management (분산 제어가 적용된 WDM 전송 링크에서 집중 RDPS를 통한 시스템 성능 개선)

  • Lee, Seong-Real
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.4
    • /
    • pp.971-980
    • /
    • 2013
  • System performance improvement through the concentrated residual dispersion per span (RDPS) in special transmission fiber spans in optical transmission links with dispersion management (DM) for wavelength division multiplexed (WDM) transmission is investigated through the comparison with the performance in optical transmission links with uniform RDPS in every fiber spans. It is confirmed that, in optical links with RDPS of 0 ps/nm uniformly distributed in the rest fiber spans, if RDPS of 300 ps/nm and 1,320 ps/nm are concentrated in 5th-13th fiber spans and 6th-13th fiber spans, respectively, then the best performance is obtained. It is also confirmed that optimal net residual dispersion (NRD) controlled by precompensation and postcompensation are 10 ps/nm and -10 ps/nm, respectively, in all two cases, and the effective launching power range below 1 dB eye opening penalty (EOP) in the concentrated RDPS of 300 ps/nm and 1,320 ps/nm are improved by 2 dB and 6 dB than optical transmission links with the uniformly distributed RDPS, respectively.