• Title/Summary/Keyword: Wavelength Modulation

Search Result 187, Processing Time 0.022 seconds

Modulation Characteristics of Coupled-Ring Reflector Laser Diode (Coupled-Ring Reflector 레이저 다이오드의 변조 특성)

  • Yun, Pil-Hwan;Kim, Su-Hyeon;Jeong, Yeong-Cheol
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2006.07a
    • /
    • pp.315-316
    • /
    • 2006
  • The modulation bandwidth, wavelength chirp of directly modulated coupled-ring reflector laser diode have been investigated using time-domain modeling. For a specific design, the modulation frequency could be 6 GHz and the frequency chirp could be in the range of $120^{\sim}200$ MHz/mA.

  • PDF

Development of 2.5 Gbps Multi-Channel Tunable Wavelength Converter Based on Cross Gain Modulation in Semiconductor Optical Amplifier (반도체 광증폭기의 상호 이득 변조를 이용한 2.5 Gbps 다채널 가변형 파장변환기)

  • Son, Jung-Min;Lee, Sang-Sun
    • Korean Journal of Optics and Photonics
    • /
    • v.16 no.4
    • /
    • pp.392-396
    • /
    • 2005
  • A new structure of tunable wavelength converter based on XCM in SOA was tried and analyzed. This converter used single SOA and had very simple structure. In this paper, results were experimentally obtained and demonstrated. Pump signal was generated with NRZ $(PRBS\;2^{31}-1)$ and data rate 2.5 Gbps. WDM multi conveted signals showed more than 8.3 dB extinction ratio. For BER performance, all these converted signals had within 5.0 dB power penalty compared with the pump signal. With these results, we showed that this converter was suitable for 2.5 Gbps WDM multi-channel wavelength converting.

Performance Analysis for the Variations of Input Intensity and Converted Wavelength in Wavelength Converters by XGM in SOA's (SOA의 상호이득변조 특성을 이용한 파장변환기에서 입력 광신호의 세기 및 변환파장 변화에 따른 성능 분석)

  • 방준학;이성은이종현이상록
    • Proceedings of the IEEK Conference
    • /
    • 1998.10a
    • /
    • pp.991-994
    • /
    • 1998
  • We demonstrate wavelength conversion of 2.5 Gb/s optical signals by cross-gain modulation (XGM) in a semiconductor optical amplifier (SOA). We investigate the effect of input pump and probe powers on the extinction ratio and power penalty to be a measure of performance in wavelength converters. As a result, we show that the best bit error rate (BER) performance can be obtained when the probe power is kept 3 dB weaker than the pump power. And we investigate the effect of wavelength detuning on performance in wavelength converters.

  • PDF

Modeling of Wavelength Conversion Charateristics in Directionally Coupled Semiconductor Optical Amplifier (반도체 광증폭기로 형성된 방향성 결합기에서의 파장변환 특성 모델링)

  • Chung, Ho-Young;Chung, Young-Chul
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.38 no.8
    • /
    • pp.43-53
    • /
    • 2001
  • Wavelength conversion devices are essential to build an expanding all-optical network, and various types of wavelength conversion techniques are being researched. Among them, wavelength conversion based on the cross phase modulation in a directionally coupled semiconductor optical amplifier has been introduced and the concept has been experimentally proved. In this paper, a split-step method is applied to properly model the mentioned wavelength converter in the time-domain and various characteristics have been analyzed. It is shown that the present modeling approach can explain the results of the reported experimental results. Furthermore the wavelength conversion is shown to be well performed when the input signal wave and the converted wave travels in the opposite direction. The simulation shows that the positive and negative chirping appear simultaneously at both the leading and trailing of edges of the optical pulse.

  • PDF

Packet Error Rate comparsion of Different Modulation Formats over Terrestrial Optical Wireless Communication in Turbulent Atmosphere (교란대기 지상 광무선 통신에서 변조방식에 따른 패킷 오류율 비교)

  • Hong, Kwon-Eui
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39B no.12
    • /
    • pp.856-863
    • /
    • 2014
  • In the terrestrial optical wireless communication(OWC), the performance is affected by atmospheric turbulence and particles in the air. The received signal power loss mainly is caused by turbulence and scattering. To minimize the adverse atmospheric effects, the OWC used optical signal modulation, such as OOK, PPM and DPIM. In this paper, the packet error rate(PER) was analyzed above three modulation methods to ground optical link in atmospheric turbulence, scattering and link distance. The OWC system used three wavelengths which are 850nm, 1310nm and 1550nm. I assumed the atmospheric turbulence intensity is weak, so the refractive index is $Cn2{\approx}10-14m-2/3$ and the visibility is 2km. The numerical results shown that the L-DPIM scheme and the wavelength 1550nm are better than other modulation methods and wavelengths.

Design and Performance Analysis of a Multi Wavelength Terahertz Modulator Based on Triple-Lattice Photonic Crystals

  • Ji, Ke;Chen, Heming;Zhou, Wen
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.5
    • /
    • pp.589-593
    • /
    • 2014
  • Terahertz (THz) communication has important applications in high-speed and ultra broadband wireless access networks. The THz modulator is one of the key devices in a THz communications system. Wavelength division multiplexing (WDM) can expand the capacity of THz communications systems, so research on multi wavelength THz modulators has significant value. By combining photonic-crystal and THz technology, a novel type of multi wavelength THz modulator based on a triple-lattice photonic crystal is proposed in this paper. Compared to a compound-lattice photonic crystal, a triple-lattice photonic crystal has a larger gap width of 0.196. Simulation results show that six beams of THz waves can be modulated simultaneously with high performance. This modulator's extinction ratio is as large as 34.25 dB, its insertion loss is as low as 0.147 dB, and its modulation rate is 2.35 GHz.

Wavelength Readout of A Fiber Laser Using Time Delayed Quadrature Sampling (시간지연샘플링을 이용한 광섬유레이저의 파장변화검출)

  • 김종섭;송민호
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.3
    • /
    • pp.31-38
    • /
    • 2004
  • The wavelength variation of a scanned fiber laser is analyzed using quadrature sampling technique. By time delayed sampling of a phase modulated Mach-Zender interferometer, the wavelength information can be precisely determined regardless of the nonlinearity in the Fabry-Perot wavelength filter which scanned the fiber laser. A wavelength readout resolution of ~20 pm was obtained at 2 KHz M-Z modulation frequency, and it was shown that the resolution could be improved in case of using an electro-optic phase modulator.

Characteristics of Compensation for Distorted Optical Pulse with Initial Frequency Chirp in 3 X 40 Gbps WDM Systems Adopted Mid-Span Spectral Inversion

  • Lee, Seong-Real;Lee, Yun-Hyun
    • Journal of electromagnetic engineering and science
    • /
    • v.3 no.2
    • /
    • pp.79-85
    • /
    • 2003
  • In this paper, we investigated the degree of compensation for distorted optical pulse of wavelength division multiplexed(WDM) channel with initial frequency chirp generated in optical transmitter. The WDM channel signal distortion is due to chromatic dispersion, self phase modulation(SPM) and cross phase modulation(XPM) in fiber. The considered system is 3 ${\times}$ 40 Gbps intensity modulation direct detection(IM/DD) WDM transmission systems, which adopted mid-span spectral inversion(MSSI) as compensation method. We confirmed that the effect of initial frequency chirp on compensation for signal distortion due to a SPM is gradually decreased as a dispersion coefficient of fiber becomes gradually small. But, in the aspect of a compensation for signal distortion due to both SPM and XPM, the effect of initial frequency chirp on compensation is gradually decreased as a dispersion coefficient of fiber becomes gradually large.

Performance Evaluation of Underwater Optical Wireless Communication Depending on the Modulation Scheme

  • Jeong, Gabin;Kim, Sung-Man
    • Current Optics and Photonics
    • /
    • v.6 no.1
    • /
    • pp.39-43
    • /
    • 2022
  • Underwater optical wireless communication (UOWC) is a good candidate for high-speed underwater wireless communication. In this work, we compare the performance of several modulation techniques for a UOWC system consisting of a light-emitting diode (LED) with an operating wavelength of 405 nm and a Si avalanche photodiode (APD). In this work, we consider six modulation schemes: 4-quadrature amplitude modulation (QAM), 8-QAM, quadrature phase shift keying (QPSK), binary phase shift keying (BPSK), on-off keying (OOK), and 4-pulse amplitude modulation (PAM). We also consider the cases of pure water and seawater for the working conditions. Our results show that 4-QAM and 8-QAM perform the best, in terms of communication distance and transmission power efficiency, for all water types considered.