• Title/Summary/Keyword: Waveguide-based power divider

Search Result 13, Processing Time 0.022 seconds

Design for a Single-layer Feeder Waveguide Array using $\pi$-Junctions with the Inductive Wall (유도성 벽을 이용한 $\pi$ 분기형 일층구조 급전도파관 어레이의 설계)

  • 민경식;김광욱;김동철;임학규
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.12 no.2
    • /
    • pp.257-267
    • /
    • 2001
  • This paper presents a design for a single-layer feeder waveguide array using $\pi$-junctions with the inductive wall. The feed structure consists of a single waveguide placed on the same layer as radiating waveguide and is characterized by the unit divider, called a $\pi$-junction. This $\pi$-junction with an inductive wall splits part of the power into two branchs waveguide through one coupling window, and can excite densely arrayed waveguide at equal phase and amplitude. The power dividing characteristics of the cascade of $\pi$ -junctions are analyzed by Galerkin's method of moments. The numerical results show reasonable agreement with the experimental results. From the optimum simulation results based on the feeder waveguide using $\pi$-junction, we obtained the scattering matrices of the feeder divided power at 3.95 GHz.

  • PDF

A Novel Waveguide-based Ka-band Power Divider/Combiner Using Slotline-to-Microstrip Transitions (슬롯라인-마이크로스트립 변환을 이용한 도파관 형태의 Ka-band 전력 분배/결합기)

  • 정진호;천창율;권영우
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.5C
    • /
    • pp.506-511
    • /
    • 2002
  • In this paper, waveguide-based power combiner using conventional slotline-to-microstrip transition was proposed at Ka-band. The proposed 2-way and 4-way power combiner consist of waveguide-to-slotline transition, two or four slotline-to-microstrip transitions, and impedance matching networks. Their structures were simulated and optimized by 3-D FEM simulation. The 2-way power combiner showed a very low back-to-back insertion loss of 1.0 dB and return loss better than 15 dB from 25.7 GHz to 29.8 GHz except the resonant frequency. The 2-way power combining approach was extended to 4-way power combining using slotline tee junction. The 4-way power combiner showed the similar performance to that of 2-way power combiner with 2 GHz smaller bandwidth.

A D-Band Balanced Subharmonically-Pumped Resistive Mixer Based on 100-nm mHEMT Technology

  • Campos-Roca, Y.;Tessmann, A.;Massler, H.;Leuther, A.
    • ETRI Journal
    • /
    • v.33 no.5
    • /
    • pp.818-821
    • /
    • 2011
  • A D-band subharmonically-pumped resistive mixer has been designed, processed, and experimentally tested. The circuit is based on a $180^{\circ}$ power divider structure consisting of a Lange coupler followed by a ${\lambda}$/4 transmission line (at local oscillator (LO) frequency). This monolithic microwave integrated circuit (MMIC) has been realized in coplanar waveguide technology by using an InAlAs/InGaAs-based metamorphic high electron mobility transistor process with 100-nm gate length. The MMIC achieves a measured conversion loss between 12.5 dB and 16 dB in the radio frequency bandwidth from 120 GHz to 150 GHz with 4-dBm LO drive and an intermediate frequency of 100 MHz. The input 1-dB compression point and IIP3 were simulated to be 2 dBm and 13 dBm, respectively.