• Title/Summary/Keyword: Waveguide transition

Search Result 100, Processing Time 0.024 seconds

Design of Q-band Mode Converter with the Discontinuity Compensation and Its Application to Waveguide Mixer Module (불연속을 보상한 Q밴드 모드 변환기의 설계 및 도파관 혼합기 모듈 제작에의 응용)

  • 한상은;이종환;염경환
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.11
    • /
    • pp.1198-1206
    • /
    • 2003
  • In this paper, a MMIC waveguide mixer module based upon the novel suggested mode converter for wave-guide-to-microstrip transition was fabricated and measured. The insertion and return losses of the mode converter was optimized by compensating the discontinuity effect between ridge and microstrip with the modification of 50 $\Omega$ microstrip line pattern. Due to the low loss nature of the mode converter, a millimeter wave MMIC mixer chip can be successfully applied as a waveguide module for mmW waveguide communication system. The measured results of the module showed the successful MMIC chip application in waveguide and the negligible degradation of the supplied chip specification.

Design of Tapered Line with Improved Chebyshev Function Removed Discontinuities (Chebyshev 함수에 의한 테이퍼형 선로의 설계에서 임피던스 불연속 제거에 관한 연구)

  • 이종빈;이상호;김상태;신철재
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.8 no.6
    • /
    • pp.620-628
    • /
    • 1997
  • When the Chebyshev function is applied to design the waveguide transition, it exhibits poor impedance matching characteristics due to impedance discontinuities at the ends of tapered line. In this paper, an improved Chebyshev function, which is obtained by using the convolution property, is proposed to make improvements on the impedance matching characteristics of the waveguide transition. When rectangular to circular waveguide transition is designed by improved function, then the computed return loss is approximately 5 dB better than the conventional Chebyshev function.

  • PDF

Sapphire Based 94 GHz Coplanar Waveguide-to-Rectangular Waveguide Transition Using a Unilateral Fin-line taper (평면형 Fin-line 테이퍼를 이용한 사파이어 기반의 94 GHz CPW-구형 도파관 변환기)

  • Moon, Sung-Woon;Lee, Mun-Kyo;Oh, Jung-Hun;Ko, Dong-Sik;Hwang, In-Seok;Rhee, Jin-Koo;Kim, Sam-Dong
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.45 no.10
    • /
    • pp.65-70
    • /
    • 2008
  • We design and fabricate the 94 GHz Coplanar waveguide(CPW)-to-rectangular waveguide transition that is transmits signal smoothly between the CPW, which is a popular transmission line of the planar circuits, and rectangular waveguide for the 94 GHz transceiver system. The proposed transition composed of the unilateral fin-line taper and open type CPW-to-slot-line transition is based on the hard and inflexible sapphire for the flip-chip bonding of the planar MMICs using conventional MMIC technology. We optimize a single section transition to achieve low loss by using an EM field solver of Ansoft's HFSS and fabricate the back- to-back transition that is measured by Anritsu ME7808A Vector Network Analyzer in a frequency range of $85{\sim}105$ GHz. From the measurement and do-embedding CPW with 3 mm length, an insertion and return loss of a single-section transition are 1.7 dB and more an 25 than at 94 GHz, respectively.

Design of W-band Microstrip-to-Waveguide Transition Structure Using Fin-line Taper (Fin-line taper를 이용한 W-대역 마이크로스트립-도파관 전이구조 설계)

  • Kim, Young-Gon;Yong, Myung-Hun;Lee, Hyeonkeon;Joo, Ji-Han;An, Se-Hwan;Seo, Mihui
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.3
    • /
    • pp.37-42
    • /
    • 2022
  • A high-performance wideband transition from microstrip to waveguide is proposed. This transition is designed by consideration of gradual field transformation and optimal impedance matching between microstrip line and fin-line. Clear design guidelines of proposed transition using fin-line taper with offset DSPSL (double-sided parallel stripline) are provided to determine the transition shape and the transition length. The fabricated transition exhibits less than 0.67 dB insertion loss per transition for frequencies from 85 to 108 GHz, and less than 1 dB insertion loss from 83 to over 110 GHz. Proposed transition is expected compact radar and various applications.

A Waveguide-Microstrip Transition using Curvature Variable Taper (곡률 변화형 테이피를 이용한 도파관-마이크로스트립 트랜지션)

  • 차원석;조영송;신철재
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.31A no.2
    • /
    • pp.45-52
    • /
    • 1994
  • A curvature variable taper is proposed for a waveguide-microstrip transition. It is applied to a ridge waveguide. The curvature depends on the taper length and difference of waveguide's height and microstrip substrate's height. The taper is manufactured easier than the other tapers. It's reflection coefficient is smaller than the parabolic taper's below one wavelengrh. The results of experiment show that S$_{11}$ is below -20dB and SS$_{21}$ is about -0.5dB in the band of 10~15 GHz. These results are good agreement with the theoritical values.

  • PDF

Equivalent Network Modeling of Slot-Coupled Microstripline to Waveguide Transition (슬롯 결합 마이크로스트립라인-도파관 천이기의 등가 회로 모델링)

  • Kim Won-Ho;Shin Jong-Woo;Kim Jeong-Phill
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.10 s.89
    • /
    • pp.1005-1010
    • /
    • 2004
  • An analysis method of slot-coupled microstripline to waveguide transition is presented to developed a simple but accurate equivalent circuit model. The equivalent circuit consists of an ideal transformer, microstrip open stub, and admittance elements looking into a waveguide and a half space of feed side from a slot center. The related circuit element values are calculated by applying the reciprocity theorem, the Fourier transform and series representation, the complex power concept, and the spectral-domain immittance approach. The computed scattering parameters are compared with the measured, and good agreement validates the simplicity and accuracy of the proposed equivalent circuit model.

Design of Compact Q-Band Waveguide-to-Microstrip Transition for UAV Millimeter-Wave Radiometer Applications (무인항공기 밀리미터파 라디오미터 응용을 위한 소형 Q대역 도파관-마이크로스트립 전이구조 설계)

  • Woo, Dong Sik;Jeong, Jong-Hyeog
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.4
    • /
    • pp.266-269
    • /
    • 2018
  • A compact Q-band waveguide-to-microstrip transition for UAV(Unmanned Aerial Vehicle) radiometer applications is presented. The key features of this transition are simplicity, compactness, easy matching, and lower sensitivity to the dimensions and fabrication tolerances. The simple E-plane patch-type design is insensitive to the backshort cavity enclosure and misalignment between the waveguide and microstrip substrate. The primary parameters are optimized using a three-dimensional(3D) electromagnetic simulator(ANSYS HFSS). It exhibited better than 20-dB return loss at mid-band frequencies with less than 1-dB insertion loss for the back-to-back transition, and a return loss better than 15 dB over the frequency range of 36 GHz to 42 GHz.

Design and fabrication of a 12-way radial combiner with a miniaturized dual waveguide to coaxial transition structure (소형화가 가능한 이중 도파관-동축 변환 구조를 갖는 12-way 방사형 결합기 설계 및 제작)

  • Su Hyun Lee;Byung Joo Kang;Hyo Sang Moon;Nam Woo Choi;Hoon Ki Yang
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.23 no.6
    • /
    • pp.145-155
    • /
    • 2023
  • A radial combiner with high efficiency characteristics in the X-band was designed and manufactured using a waveguide and matching structure. In particular, in order to manufacture it in a small size, a dual waveguide to coaxial transition structure was applied that allows two ports to be matched to one waveguide. Applying this structure makes it possible to manufacture smaller than typical coaxial to waveguide radial combiner. As a result of measurement in the X-band band of 9.2~10GHz, the return loss was less than -18.408dB and the output insertion loss was less than 0.206dB, and the output combining efficiency was obtained as high as 95.37% or more. It is expected that it can be used in the combining part for high output transmitters in the millimeter wave band in the future. In particular, the range of use is expected to increase by reducing the size and weight.

Ku-Band Transitions between Microstrip and Substrate Integrated Waveguide and Microstrip and Hollow Substrate Integrated Waveguide (Ku-대역 마이크로스트립-SIW 및 마이크로스트립-HSIW 천이 구조)

  • Hong, Sung-June;Kim, Seil;Lee, Min-Pyo;Lim, Jun-Su;Kim, Dong-Wook
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.30 no.2
    • /
    • pp.95-103
    • /
    • 2019
  • In this paper, we present a microstrip-to-substrate integrated waveguide(SIW) transition and microstrip-to-hollow SIW(HSIW) transition for Ku-band satellite communication systems. For the complete utilization of the HSIW, a structure filled with air instead of a dielectric material, a microstrip-to-HSIW transition is designed, fabricated, and compared with a microstrip-to-SIW transition. A back-to-back microstrip-to-SIW transition is measured in the range 12~18 GHz; it exhibits a return loss ${\geq}20dB$ and an insertion loss of $1.5{\pm}0.2dB$. In contrast, a back-to-back microstrip-to-HSIW transition exhibits a return loss of at least 15 dB and an insertion loss of $0.55{\pm}0.2dB$ in the same frequency range.

The Band-Broadening Design of the Rotary Joint Transition for the X-Band Microwave Channel (X밴드 고주파 채널용 로터리 조인트 천이구조의 대역확장 설계)

  • Kim, Siok;Lee, Changhyeong;Han, Dajung;Roh, Donsuk;Kahng, Sungtek
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.3
    • /
    • pp.557-562
    • /
    • 2017
  • In this paper, we show the design of a rotary joint transition for the X-band channel in a rotatable microwave communication system. The transition seems complicated to make a channel between two coaxial cables through a cylindrical waveguide. To make a broad-band performance in the X-band with low insertion loss and return loss given the constraint on the length and radius of this complicated-looking cylindrical structure, Genetic Algorithm optimization is adopted to check the validity of an intensive parametric study in the design. The structure is fabricated and tested to show how valid the design method is as well as good frequency responses.