• Title/Summary/Keyword: Waveguide Slot Array

Search Result 55, Processing Time 0.024 seconds

The Design of Planar Beam Tilt Antenna for Satellite up-link Communication in Ka-band (Ka-band 위성통신 up-link 용 평면형 빔틸트 안테나의 설계)

  • Lim, Gye-jae
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.5 no.3
    • /
    • pp.101-109
    • /
    • 2012
  • Because the installation problem of parabola antenna that is tilted to 45 degree when this antenna is installed at the area of middle latitude, the study on planar antenna in place of parabola antenna is made rapid progess. Especially, The development of the planar antenna for VSAT is needed depending on the increased Ka-band satellite communications. In this paper, in order to meet with these performances, an array antenna consisting of the vertical polarized waveguide longitudinal slots based on the leaky-wave mode of traveling wave antenna is proposed. Especially, for the lower sidelobe level, the design method of the radiation power distribution control using the different slot widths is proposed. An array antenna consisting of 32 leakywave waveguide antennas is showing 35.16 dBi of gain, 2.5 degree of beamwidth at azimuth, below than -30 dB of sidelobe level, 45.8 degree of beam tilt angle in center frequency 30.2 GHz.

Design of V-Band Waveguide Slot Sub-Array Antenna for Wireless Communication Back-haul (무선통신 백-홀용 V-밴드 도파관 슬롯 서브-배열 안테나의 설계)

  • Noh, Kwang-Hyun;Kang, Young-Jin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.7
    • /
    • pp.334-341
    • /
    • 2016
  • In this paper, the study of a waveguide aperture-coupled feed-structured antenna has been conducted for the purpose of applying it to a wireless back-haul system sufficient for high-capacity gigabits-per-second data rates. For this study, a $32{\times}32$ waveguide slot sub-array antenna with a corporate-feed structure was designed and produced. Also, this antenna is used at 57 GHz to 66 GHz in the V-band. The construction of the antenna is a laminated form with radiating parts (outer groove and slot, cavity), a coupled aperture, and feeds in each. The antenna was designed with HFSS, which is based on 3D-FEM, produced with aluminum processed by a precision-controlled milling machine, and assembled after a silver-plating process. The measurement result from analysis of the characteristics of the antenna shows that return loss is less than -12 dB, VSWR < 2.0, and a wide bandwidth ranges up to 16%. An overall first side lobe level is less than -12.3 dB, and a 3 dB beam width is narrow at about $1.85^{\circ}$. Also, antenna gain is 38.5 dBi, offering high efficiency exceeding 90%.

A Slot Away Antenna with a Simple Feed Structure for Broadband Multimedia Wireless Applications (단순한 급전 구조를 갖는 Broadband Multimedia Wireless System(BMWS)용 슬롯 배열 안테나)

  • 성영제;이정수;오순수;문종용;최원규;표철식;최재익;김영식
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.3
    • /
    • pp.209-216
    • /
    • 2003
  • We design and fabricate slot array antenna for BMWS(Broadband Multimedia Wireless System) applications. This paper presents a simple feed structure, which consists of two horns and a parallel-plate waveguide, because antennas operating at 40.5 GHz~43.5 GHz have considerable feeding losses. The simple feed structure has the advantages of high-efficiency and mass-production. The fabricated antenna has a gain of 25.8 dBi with a sidelobe level below -18 ㏈ and a 3 ㏈ beamwidth of approximately 3$^{\circ}$ in the E-plane. In case of H-plane, a 3 ㏈ beamwidth is 17$^{\circ}$ and a sidelobe level is suppressed to below -27 ㏈. The experimental results are in good agreement with the simulation results. The authors expect that narrow 3 ㏈ beamwidth is obtained by combining a few proposed slot array antennas in parallel.

A Study on Waveguide Slotted Active Phased Array Radar Target Information Error Compensation Technique (도파관 슬롯 방식의 능동위상배열레이더 표적정보 오차보상기법 연구)

  • Yoo, Dong-gil;Kim, Duck-hwan;Kim, Han-Saeng;Lee, Ki-Won
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.22 no.1
    • /
    • pp.11-19
    • /
    • 2019
  • The waveguide slotted active phased array radar is characterized in that the beam is tilt in a specific direction when the feeding position of the antenna is not in the center of the antenna. If the beam deflection phenomenon is not properly compensated, error bias is generated in the target information collected by the radar, and the target accuracy is lowered. In this paper, we describe a technique to compensate the error of the target information that is collected in the active phased array radar of the waveguide slot type instead of the center of the antenna.

The design of series-fed microstrip array antenna using subarray at Q band (서브 어레이를 이용한 Q 대역 직렬 급전 마이크로스트립 배열 안테나의 설계)

  • Heo, Johns;Oh, Soon-Soo;Sung, Young-Jae;Kim, Young-Sik
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2003.11a
    • /
    • pp.413-417
    • /
    • 2003
  • In this paper, a series-fed microstrip array antenna utilized a sub-array with a waveguide slot feeding is presented. This sub-array can reduce the feed loss compared with a full microstrip feed network. The sub-array has been designed both for a broad reflection bandwidth and a flat gain bandwidth from 40.5 GHz to 43.5 GHz. The $24{\times}24$ array antenna has been implemented with the maximum gain of 32.4 dBi.

  • PDF

A Study on the Optimum Design of Rectangular Slotted Waveguide Antenna (구형도파관 슬롯배열 안테나의 최적 설계에 관한 연구)

  • Son, Tae-Ho;Lee, Sang-Seol
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.26 no.5
    • /
    • pp.32-37
    • /
    • 1989
  • The design method of the center-fed resonant type slotted waveguide antenna using the Dolph-Tschebyscheff array is presented. Slot admittances are obtained by empirical and theoretical method since the effect of mutual coupling between slots is included. We design a slotted waveguide antenna which has 1.8ft. length and operates on 9.4GHz. The experimental results of the antenna show that its gain, maximum sidelobe level and half power beam-width are 25.5dB, -22dB and 3.6deg., respectively.

  • PDF

A Design Study of Radomes for Airplanes and Missiles (항공기 및 미사일용 레이돔 설계에 관한 연구)

  • 나형기;박창현
    • Proceedings of the IEEK Conference
    • /
    • 1999.11a
    • /
    • pp.139-142
    • /
    • 1999
  • In this paper, a method of Radome design is considered. The shape is similar to tangent-ogive, and the antenna is a waveguide broad-wall slot array antenna. The characteristic of the Radome material is obtained by measuring test samples. By analyzing the transmission efficiency of the flat plate, Radome wall thickness is determined firstly. And then, the detailed characteristics of the Radome are analyzed by using GO-PO approximation technique. Several simple parameters of the designed Radome are tested and compared with the simulation results.

  • PDF

Cavity-Backed Slot Array Antenna for a Repeater System of a Satellite Digital Multimedia Broadcasting (위성 DMB 중계기용 Cavity-Backed슬롯 배열 안테나)

  • Jung Hee-Chul;Lee Hak-Yong;Jung Byungwoon;Kang Gi-Cho;Park Myun-Joo;Lee Byungje
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.16 no.4 s.95
    • /
    • pp.366-372
    • /
    • 2005
  • This paper presents analysis of a slot array antenna having a low side lobe level and high front-to-back ratio for a repeater system of a satellite DMB(Digital Multimedia Broadcasting) service. Antennas for this repeater system require a high gain and enough isolation to reduce interferences between signals in system. Therefore, it is necessary to suppress a side lobe level and to increase front-to-back ratio. Unlike a structure 134 by lossy microstrip lines, in this work a single cavity-backed slot antenna array using a single waveguide feed is proposed to obtain the reliability for high power handling and high radiation efficiency. The side lobe level and front-to-back ratio are enhanced with tapered array technique and an optimized vertical reflector. The measured side lobe levels in H- and E-plane are under $-33.24\;\cal{dB}$ and $-35.78\;\cal{dB}$, respectively. The front-to-back ratio over $37.84\;\cal{dB}$, and the peak gain of over $17\;\cal{dBi}$ are measured.

The Slotted Array In-motion Antenna for Receiving a Tilted Linear Polarization using a single layer film (기울어진 선형편파 수신을 위한 차량용 도파관 슬롯 배열 안테나)

  • Son, Kwang-Seop;Park, Chan-Gu
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.9
    • /
    • pp.52-59
    • /
    • 2009
  • In this paper, the planar waveguide slotted array antenna is presented, which has the 3-layered structure of feeding networks for a high gain. Due to the ionosphere which generates 'Faraday rotation', the skew is happened between the signal radiated from an artificial satellite and the receiving antenna. This causes a polarization loss. In this paper, to remove this polarization loss, the dumbbell shaped linear polarizer using a single layer film is proposed. The gain of proposed antenna is 29.4dB.

High Efficiency Active Phased Array Antenna Based on Substrate Integrated Waveguide (기판집적 도파관(SIW)을 기반으로 하는 고효율 능동 위상 배열안테나)

  • Lee, Hai-Young
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.3
    • /
    • pp.227-247
    • /
    • 2015
  • An X-band $8{\times}16$ dual-polarized active phased array antenna system has been implemented based on the substrate integrated waveguide(SIW) technology having low propagation loss, complete EM shielding, and high power handling characteristics. Compared with the microstrip case, 1 dB less is the measured insertion loss(0.65 dB) of the 16-way SIW power distribution network and doubled(3 dB improved) is the measured radiation efficiency(73 %) of the SIW sub-array($1{\times}16$) antenna element. These significant improvements of the power division loss and the radiation efficiency using the SIW, save more than 30 % of the total power consumption, in the active phased array antenna systems, through substantial reduction of the maximum output power(P1 dB) of the high power amplifiers. Using the X-band $8{\times}16$ dual-polarized active phased array antenna system fabricated by the SIW technology, the main radiation beam has been steered by 0, 5, 9, and 18 degrees in the accuracy of 2 degree maximum deviation by simply generating the theoretical control vectors. Performing thermal cycle and vacuum tests, we have found that the SIW array antenna system be eligible for the space environment qualification. We expect that the high efficiency SIW array antenna system be very effective for high performance radar systems, massive MIMO for 5G mobile systems, and various millimeter-wave systems(60 GHz WPAN, 77 GHz automotive radars, high speed digital transmission systems).