• Title/Summary/Keyword: Waveguide Cavity

Search Result 87, Processing Time 0.023 seconds

77 GHz Waveguide VCO for Anti-collision Radar Applications (차량 충돌 방지 레이더 시스템 응용을 위한 77 GHz 도파관 전압 조정 발진기)

  • Ryu, Keun-Kwan;Kim, Sung-Chan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.7
    • /
    • pp.1652-1656
    • /
    • 2014
  • In this work, we demonstrated a 77 GHz waveguide VCO with transition from WR-12 to WR-10 for anti-collision radar applications. The fabricated waveguide VCO consists of a GaAs-based Gunn diode, a varactor diode, a waveguide transition, and two bias posts for operating as a LPF and a resonator. The cavity is designed for fundamental mode at 38.5 GHz and operated at second hormonic of 77 GHz. The waveguide transition has a 1.86 dB of insertion loss and -30.22 dB of S11 at the center frequency of 77 GHz. The fabricated VCO achieves an oscillation bandwidth of 870 MHz. Output power is from 12.0 to 13.75 dBm and phase noise is -100.78 dBc/Hz at 1 MHz offset frequency from the carrier.

Design and Manufacture of a Dual Mode Waveguide Filter Loading On the Satellite (인공위성 탑재용 이중모드 도파관 필터 설계 및 제작에 관한 연구)

  • 고영목;강원준;한수용;박종화;김춘길;라극환
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.30A no.10
    • /
    • pp.1-11
    • /
    • 1993
  • A narrow-band dual TE$_{111}$ mode circular waveguide filter for Ku-Band satellite transponder was designed and manufactured based on a new model of the filter. We calculated the cavity size, pin polarizer depth and diameter, iris length and width, and used Bethe's Small Diffraction Theory and Chon's Correction Formular in order to obtain exact Result for each cavity. The designed dual model waveguide filter was manufactured with invar in order to maintain the thermal stability, and the filter performance was improved through the thermal test and vibration test to endure in the cosmic environment.

  • PDF

Compensation of Equivalent Circuit Model of TE011 Mode Cylindrical Cavity Filter

  • Ryu, Nam-Young;Lee, Jeong-Hae
    • Journal of electromagnetic engineering and science
    • /
    • v.2 no.2
    • /
    • pp.100-104
    • /
    • 2002
  • A proper equivalent circuit model for coupling iris has been derived in order to compensate the length of cavity in a $TE_{011}$TEX> mode cylindrical cavity filter. A method to resolve the difference in bandwidth and feature or ripple systematically has been proposed. This method can be applied to other types of waveguide cavity filter.

Cavity-type and Parasitic-type Couplings through a Harrow Slit in A Parallel-Plate Waveguide with a Conducting Strip (평행평판도파관의 좁은 슬릿을 통한 도체 스트립과의 캐비티형 결합과 기생형 결합)

  • 이종익;고지환;조영기
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.4
    • /
    • pp.384-392
    • /
    • 2003
  • In this study, the electromagnetic coupling through a narrow transverse slit in the upper wall of a parallel-plate waveguide(PPW) covered by a dielectric slab with a nearby conducting strip on the slab is considered. Two contrastive coupling phenomena, cavity-type and parasitic-type, observed in the geometry have been distinguished by differences in the resonant strip lengths and offset positions, induced strip current, radiation pattern, frequency bandwidth, and electromagnetic field distributions near the coupling slit.

A Study on the Microwave Electric-Field Focusing Waveguide Systems for Driving Plasma Visible Light (플라즈마 가시광 구동을 위한 초고주파 전계 집속형 도파관 시스템에 관한 연구)

  • Jeon, Hoo-Dong;Park, Eui-Joon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.3
    • /
    • pp.303-312
    • /
    • 2009
  • In this study, a waveguide system for focusing the electric field is presented to emit the microwave-driven plasma visible light. This system consists of a magnetron for the microwave power supply, the waveguide section for power propagation, and the mesh-type cavity reactor. The quartz bulb containing a dose of sulfur powder and buffer gas Ar is located in the reactor, and forced by the strongly concentrated electric field for generating and exciting the sulfur plasma. That is, the conductor tips are loaded on each inner wall of the waveguide and the reactor, and then the plasma bulb is positioned between the tips, hence focusing the strong electric field on the bulb. Furthermore the waveguide section is designed for minimizing the degradations of matching characteristics according to the variations of the electrical conductivities of plasma at the transitory phase for plasma generation, hence providing the stable operation. Finally, the 2.45 GHz aluminum waveguide system is constructed, and then experiments for emitting the visible light are performed by using 400 W-class magnetron, showing the validity of designed system.

A Study on High-Power Handling Capability of X-Band Circular Waveguide Cavity Filter (X-대역 원통형 도파관 캐비티 필터의 고전력 핸들링 능력 연구)

  • Lee, Sun-Ik;Kim, Joong-Pyo;Lim, Won-Gyu;Kim, Sang-Goo;Lee, Pil-Yong;Jang, Jin-Baek
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.1
    • /
    • pp.49-60
    • /
    • 2017
  • In this paper, we presented the result of the study on high-power handling capability of the X-band circular waveguide cavity filter configured at the output of high power amplifier(120 W) for geostationary satellites. The dual mode circular waveguide cavity filter with 6th order is selected and the physical model of the filter is designed after determination of the size of resonator from mode chart. Multipactor margin analysis is performed by the SEM method and the VMF method. The result shows that the VMF method predicts lower multipactor breakdown thresholds than the SEM method. Evaluating the multipactor margin obtained by the VMF method to ECSS criteria, we could decide to perform multipactor test. The multipactor test conducted in ESA facility shows that multipactor did not occur even until the RF power increased up to 540 W. In consequence, by both analysis and test, we could verify that the X-band circular waveguide cavity filter has the sufficient high-power handling capability to operate on orbit.

High Performance W-band VCO for FMCW Applications (FMCW 응용을 위한 우수한 성능의 W-band 도파관 전압조정발진기)

  • Ryu, Keun-Kwan;Rhee, Jin-Koo;Kim, Sung-Cha
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.4A
    • /
    • pp.214-218
    • /
    • 2012
  • In this paper, we reported on a high performance waveguide VCO(voltage controlled oscillator) for FMCW applications. The waveguide VCO consists of a GaAs Gunn diode, a varactor diode, and two bias posts with low pass filter(LPF). The cavity is designed for fundamental mode at 47 GHz and operated at second harmonic of 94 GHz center frequency. The developed waveguide VCO has 1.095 GHz bandwidth, 590 MHz linearity with 1.69% and output power from 14.86 to 15.93 dBm. The phase noise is under -95 dBc/Hz at 1 MHz offset.

An Investigation of Higher Order Modes in Widthwise in Parallel Plate Waveguide (평행평판 도파관에서 너비 방향으로 발생하는 고차 모드에 관한 연구)

  • Cho, Gyu-Yeong;Jo, Hyun-Dong;Park, Wee-Sang
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.6
    • /
    • pp.731-739
    • /
    • 2012
  • Transverse electric modes in parallel plate waveguide of which cut-off frequency is much lower than that of $TE_1$ and $TM_1$ mode generally known as the lowest higher order mode are investigated. Electric and magnetic field components of the modes are evaluated with the assumption that boundaries at both sides are perfect magnetic conductor. The existence of these modes are verified by simulation and experimental measurement of parallel plate waveguide cavity. Changed characteristics from the fact that the boundaries are imperfect are studied.

Narrow Resonant Double-Ridged Rectangular Waveguide Probe for Near-Field Scanning Microwave Microscopy

  • Kim, Byung-Mun;Son, Hyeok-Woo;Cho, Young-Ki
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.1
    • /
    • pp.406-412
    • /
    • 2018
  • In this paper, we propose a narrow resonant waveguide probe that can improve the measurement sensitivity in near-field scanning microwave microscopy. The probe consists of a metal waveguide incorporating the following two sections: a straight section at the tip of the probe whose cross-section is a double-ridged rectangle, and whose height is much smaller than the waveguide width; and a standard waveguide section. The advantage of the narrow waveguide is the same as that of the quarter-wave transformer section i.e., it achieves impedance-matching between the sample under test (SUT) and the standard waveguide. The design procedure used for the probe is presented in detail and the performance of the designed resonant probe is evaluated theoretically by using an equivalent circuit. The calculated results are compared with those obtained using the finite element method (Ansoft HFSS), and consistency between the results is demonstrated. Furthermore, the performance of the fabricated resonant probe is evaluated experimentally. At X-band frequencies, we have measured the one-dimensional scanning reflection coefficient of the SUT using the probe. The sensitivity of the proposed resonant probe is improved by more than two times as compared to a conventional waveguide cavity type probe.

Design of rectangular microstrip patch antenna for receiving a microwave power propagating in a rectangular waveguide (직사각형 도파관 속으로 전파하는 초고주파 전력 수신용 사각형 마이크로스트립 패치 안테나 설계)

  • 박동국
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.1 no.2
    • /
    • pp.131-136
    • /
    • 1997
  • In this paper, the input impedance of coaxial fed rectangular microstrip patch antenna located inside rectangular waveguide is calculated by using the cavity model and the mode excited in the waveguide by the patch antenna. The return loss and efficiency of the patch antennas as a function of feed position in. free space and in waveguide are calculated and compared. The maximum efficiency of the antennas in waveguide and in free space are obtained at different feed position.

  • PDF