• Title/Summary/Keyword: Wave-type flow

Search Result 274, Processing Time 0.026 seconds

Development of Low Dissipative AUSM-type Scheme (Low Dissipative AUSM-type 수치기법 개발)

  • Kim, Kyu-Hong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.9
    • /
    • pp.12-26
    • /
    • 2004
  • A new treatment of cell-interface flux in AUSM-type methods is introduced to reduce the numerical dissipation. Through analysis of TVD limiters, a criterion for the more accurate prediction of cell-interface state is found out and M-AUSMPW+ is developed by determining the transferred property newly and appropriately within the criterion. The superiority of M-AUSMPW+ is clearly revealed in multi-dimensional flow problems. It can eliminate numerical dissipation effectively in a non-flow aligned grid system. As a result, M-AUSMPW+ is shown to be much more accurate and effective than other previous schemes in multi-dimensional problems. Through a stationary contact discontinuity, a vortex flow, a shock wave/boundary layer interactions and viscous shock tube problems, it is verified that accuracy of M-AUSMPW+ is improved.

Computational Simulation of Heat flow phenomena in Newly Designed Heat Sinks (뉴 디자인된 히트싱크의 열 유동 현상 컴퓨터 시뮬레이션)

  • Lim Song Chul;Choi Jong Un;Kang Kae Myung
    • Korean Journal of Materials Research
    • /
    • v.14 no.11
    • /
    • pp.775-779
    • /
    • 2004
  • For improvement of heat dissipation performance, heat analysis is conducted on the newly designed heat sinks under two convection conditions by using computational fluid dynamics(CFD). Three types of heat sink, plate, wave and top vented wave, are used, and convection conditions are the variations of gravity direction at natural convection and of fan location at forced convection. The results of analysis showed that the heat resistances of top vented wave heat sink were $0.17^{\circ}C$/W(forced convection) and $0.48^{\circ}C$/W(natural convection). In the case of natural convection, gravity direction affected heat flow change, and protection against heat performance was superior in case of z-axis gravity direction. Under the forced convection, all the heat sinks revealed superior thermal characteristics in the fan position of z-axis rather than y-axis. In this study, it was observed that the top vented wave type heat sink showed the best ability of heat radiation comparing with the others.

An Experimental Study on Circulating Flow Around a Submerged Horizontal Plate (잠재 평판 주변에서 발생하는 순환류에 대한 실험적 연구)

  • 이정렬;한상우
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.13 no.2
    • /
    • pp.109-121
    • /
    • 2001
  • This paper describes results of an experimental study to examine the effect of a submerged horizontal breakwater to sea water exchange. Flow measurements were taken by using a PIV(Particie Image Velocimetry) system, and mean currents and wave ellipses extracted through the harmonic analysis are presented. As results, the rates of circulating flow were closely connected with the volume flux of incident waves and the counter-rotating vortex pair was observed at the onshore side of a plate. The dye study showed that incoming sea water and polluted water body mixed up significantly due to turbulent motions induced by a jet-like flow.

  • PDF

3-Dimensional Numerical Analysis of Air Flow inside OWC Type WEC Equipped with Channel of Seawater Exchange and Wave Characteristics around Its Structure (in Case of Regular Waves) (해수소통구를 구비한 진동수주형 파력발전구조물 내에서 공기흐름과 구조물 주변에서 파랑특성에 관한 3차원수치해석(규칙파의 경우))

  • Lee, Kwang Ho;Lee, Jun Hyeong;Jeong, Ik Han;Kim, Do Sam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.30 no.6
    • /
    • pp.242-252
    • /
    • 2018
  • It is well known that an Oscillating Water Column Wave Energy Converter (OWC-WEC) is one of the most efficient wave absorber equipment. This device transforms the vertical motion of water column in the air chamber into the air flow velocity and produces electricity from the driving force of turbine as represented by the Wells turbine. Therefore, in order to obtain high electric energy, it is necessary to amplify the water surface vibration by inducing resonance of the piston mode in the water surface fluctuation in the air chamber. In this study, a new type of OWC-WEC with a seawater channel is used, and the wave deformation by the structure, water surface fluctuation in the air chamber, air outflow velocity from the nozzle and seawater flow velocity in the seawater channel are evaluated by numerical analysis in detail. The numerical analysis model uses open CFD code OLAFLOW model based on multi-phase analysis technique of Navier-Stokes solver. To validate model, numerical results and existing experimental results are compared and discussed. It is revealed within the scope of this study that the air flow velocity at nozzle increases as the Ursell number becomes larger, and the air velocity that flows out from the inside of the air chamber is larger than the velocity of incoming air into the air chamber.

Classification of Riparian Riffles and Their Physical and Hydraulic Characteristics (하천 여울의 분류 및 물리, 수리학적 특성 분석)

  • Kim, Seong Whan;Yang, Jeon Young;Kim, Jin Hong
    • Journal of Korea Water Resources Association
    • /
    • v.48 no.2
    • /
    • pp.137-147
    • /
    • 2015
  • This study performed the systematic classification of the various types of riffles and analyzed their physical and hydraulic characteristics at the Hongcheon River and Seomjin River. The riffles are classified into the long type and the wide type by their ratio of length and width, and also classified into the convergent type and the divergent type by their width change along flow direction. They are also classified into the falling type, the running type, the undular wave and the undular jump by their surface profiles. The falling type and the running type usually occur near the cobbles with multiple diameters, whereas the undular wave and the undular jump occur near the small pebbles. They showed the upward convex type at the middle part, and the slope gets bigger at the downstream part.

The Compensation Method of the Modulation-delay for the Voltage type Dual PWM Converter and Composition of the Instantaneous Current Controller (전압형 Dual PWM 컨버터의 변조각 지연에 따른 보상법 및 순시전류 제어기 구성)

  • Chung, Yon-Tack;Kim, Won-Chul;Lee, Sa-Young;Chun, Ji-Yong;Kim, Hyeun-Bong;Lee, Keun-Hong
    • Proceedings of the KIEE Conference
    • /
    • 1994.07a
    • /
    • pp.369-372
    • /
    • 1994
  • In this paper, a voltage type dual PWM converter which achives the bidirectional power flow between a AC supply and a DC bus voltage is described. In PWM modulator, there exist a time difference between the sampling time and carrier wave, it achieves stable modulation even the disturbance in the synchronous AC source voltage. And this paper proposes the compensation method and the control method related a disturbance of synchronous signal using the low pass filter and phase shifter for the stable modulation. As a result the voltage type dual PWM converter makes the imput current wave as sinusoid, and performs the high power factor driving.

  • PDF

Flow Visualization of Oscillation Characteristics of Liquid and Vapor Flow in the Oscillating Capillary Tube Heat Pipe

  • Kim, Jong-Soo;Kim, Ju-Won;Jung, Hyun-Seok
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.10
    • /
    • pp.1507-1519
    • /
    • 2003
  • The two-phase flow patterns for both non-loop and loop type oscillating capillary tube heat pipes (OCHPs) were presented in this study. The detailed flow patterns were recorded by a high-speed digital camera for each experimental condition to understand exactly the operation mechanism of the OCHP. The design and operation conditions of the OCHP such as turn number, working fluid, and heat flux were varied. The experimental results showed that the representative flow pattern in the evaporating section of the OCHP was the oscillation of liquid slugs and vapor plugs based on the generation and growth of bubbles by nucleate boiling. As the oscillation of liquid slugs and vapor plugs was very speedy, the flow pattern changed from the capillary slug flow to a pseudo slug flow near the annular flow. The flow of short vapor-liquid slug-train units was the flow pattern in the adiabatic section. In the condensing section, it was the oscillation of liquid slugs and vapor plugs and the circulation of working fluid. The oscillation flow in the loop type OCHP was more active than that in the non-loop type OCHP due to the circulation of working fluid in the OCHP. When the turn number of the OCHP was increased, the oscillation and circulation of working fluid was more active as well as forming the oscillation wave of long liquid slugs and vapor plugs in the OCHP. The oscillation flow of R-142b as the working fluid was more active than that of ethanol and the high efficiency of the heat transfer performance of R -142b was achieved.

Performance test of 100 W linear compressor

  • Ko, J.;Koh, D.Y.;Park, S.J.;Kim, H.B.;Hong, Y.J.;Yeom, H.K.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.15 no.3
    • /
    • pp.35-39
    • /
    • 2013
  • In this paper, we present test results of developed 100 W class linear compressor for Stirling-type pulse tube refrigerator. The fabricated linear compressor has dual-opposed configuration, free piston and moving magnet type linear motor. Power transfer, efficiency and required pressure waveform are predicted with designed and measured specifications. In experiments, room temperature test with flow impedance is conducted to evaluate performance of developed linear compressor. Flow impedance is loaded to compressor with metering valve for flow resistance, inertance tube for flow inertance and buffer volumes for flow compliance. Several operating parameters such as input voltage, current, piston displacement and pressure wave are measured for various operating frequency and fixed input current level. Behaviors of dynamics and performance of linear compressor as varying flow impedance are discussed with measured experimental results. The developed linear compressor shows 124 W of input power, 86 % of motor efficiency and 60 % of compressor efficiency at its resonant operating condition.

Numerical Analysis of Turning Performance in Waves by Considering Wave Drift Forces (파랑 표류력을 고려한 선박의 파랑 중 선회성능 해석)

  • Seo, Min-Guk;Nam, Bo Woo;Kim, Yeongyu
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.55 no.2
    • /
    • pp.103-115
    • /
    • 2018
  • This paper performs a numerical computation of ship maneuvering performance in waves. For this purpose, modular-type model (MMG (Mathematical Modeling Group) model) is adopted for maneuvering simulation and wave drift force is included in the equation of maneuvering motion. In order to compute wave drift force, two different seakeeping programs are used: AdFLOW based on Wave Green function method and SWAN based on Rankine panel method. When wave drift force is calculated using SWAN program, not only ship forward speed but also ship lateral speed are considered. By doing this, effects of lateral speed on wave drift force and maneuvering performance in waves are confirmed. The developed method is validated by comparing turning test results in regular waves with existing experimental data. Sensitivities of wave drift force on maneuvering performance are, also, checked.

Deformation of Non-linear Dispersive Wave over the Submerged Structure (해저구조물에 대한 비선형분산파의 변형)

  • Park, D.J.;Lee, J.W.
    • Journal of Korean Port Research
    • /
    • v.12 no.1
    • /
    • pp.75-86
    • /
    • 1998
  • To design a coastal structure in the nearshore region, engineers must have means to estimate wave climate. Waves, approaching the surf zone from offshore, experience changes caused by combined effects of bathymetric variations, interference of man-made structure, and nonlinear interactions among wave trains. This paper has attempted to find out the effects of two of the more subtle phenomena involving nonlinear shallow water waves, amplitude dispersion and secondary wave generation. Boussinesq-type equations can be used to model the nonlinear transformation of surface waves in shallow water due to effect of shoaling, refraction, diffraction, and reflection. In this paper, generalized Boussinesq equations under the complex bottom condition is derived using the depth averaged velocity with the series expansion of the velocity potential as a product of powers of the depth of flow. A time stepping finite difference method is used to solve the derived equation. Numerical results are compared to hydraulic model results. The result with the non-linear dispersive wave equation can describe an interesting transformation a sinusoidal wave to one with a cnoidal aspect of a rapid degradation into modulated high frequency waves and transient secondary waves in an intermediate region. The amplitude dispersion of the primary wave crest results in a convex wave front after passing through the shoal and the secondary waves generated by the shoal diffracted in a radial manner into surrounding waters.

  • PDF