• Title/Summary/Keyword: Wave-type Flow

Search Result 272, Processing Time 0.026 seconds

Performance Evaluations for the Partial-Admission Type Turbine System (부분흡입노즐방식의 터빈시스템에 대한 성능 평가)

  • 홍창욱;박승경;남궁혁준;김경호;김영수;우유철
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.11-14
    • /
    • 2001
  • 3-D compressible flow analysis was conducted by using mixing plane method for turbine system which is consisted of partial admission nozzle and rotor. Computational results are shown oblique shock wave in blade leading and trailing edge and also shown flow separation along suction surface of blade due to abrupt blade curvature. But computational results are well agree with 1-D calculation results and experimental data.

  • PDF

Analytical Assessment on the Cooling Structure of In-wheel Driving Inverter (인휠 모터 구동용 인버터의 냉각구조에 대한 해석적 평가)

  • Kim, Sung Chul
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.2
    • /
    • pp.1-6
    • /
    • 2014
  • In-wheel driving inverter inside engine room sometimes operates in the harsh environment like high temperature of about $105^{\circ}C$. Especially, the size and power density of the inverter has become smaller and more increased. Thus, it is essential to manage the temperature of the inverter with IGBT (Insulated Gate Bipolar Transistor) switching devices for performance and endurance, because the temperature can be getting increase. In this paper, we performed the thermal flow analysis of inverter models with wave type and pin fin type cooling channels, and investigated the heat transfer characteristics of the inverter models using cooling water on channels at 8 L/min and $65^{\circ}C$. Also, we compared the thermal performance under various conditions such as coolant flow rate and layered power module structure. Therefore, we determined the feasibility of the initial inverter models and the thermal performance enhancement.

A Thermal Flow Analysis for an Optimal shape of Solar Lamp Bank (최적의 램프뱅크형태를 결정하기 위한 열유동 해석)

  • Baek, Sang-Hwa
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.4
    • /
    • pp.82-89
    • /
    • 2012
  • This study is on the thermal flow analysis to select an optimal shape of solar lamp bank. Solar Lamp bank is designed by the lamp bank design program based on point light source theory. The reliability of the program for lamp bank design is verified through irradiance variation experiments of a kind of lamp according to horizontal distance. Solar lamp bank facilitates heat distribution and satisfies the irradiance in the three wave length which test guidelines require. Among the 4 kinds of lamp bank, since lamp bank type D satisfies uniformity ${\pm}10%$ and also doesn't exceed total irradiance 1,232 $W/m^2$, type D is finally selected.

The Fabrication and Test of a Phase-change Type Micropump (상변화 구동 방식 마이크로 펌프의 제작 및 시험)

  • Sim, U-Yeong;Lee, Sang-U;Yang, Sang-Sik
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.49 no.6
    • /
    • pp.360-366
    • /
    • 2000
  • This paper presents the fabrication and test of a micropump consisting of a pair of Al flap valves and a phase-change type actuator. The actuator is composed of a heater, a silicone rubber diaphragm and a working fluid chamber. The diaphragm is actuated by the vaporization and the condensation of the working fluid. The micropump is fabricated by the anisotropic etching, the boron diffusion and the metal evaporation. The forward and the backward flow characteristics of the flap valves illustrate the appropriateness as a check valve. Also, the flow rate of the micropump is measured. When the square wave input voltage of 8 V, 70% duty ratio and 2 Hz is applied to the heater, the maximum flow rate of the micropump is $97\muell/min$ for zero pressure difference.

  • PDF

3-Dimensional Numerical Analysis of Air Flow inside OWC Type WEC Equipped with Channel of Seawater Exchange and Wave Characteristics around Its Structure (in Case of Irregular Waves) (해수소통구를 구비한 진동수주형 파력발전구조물 내 공기흐름과 구조물 주변에서 파랑특성에 관한 3차원수치해석(불규칙파의 경우))

  • Lee, Kwang Ho;Lee, Jun Hyeong;Jeong, Ik Han;Kim, Do Sam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.30 no.6
    • /
    • pp.253-262
    • /
    • 2018
  • Oscillating Water Column (OWC) Wave Energy Converters (WEC) harness electricity through a Power-Take-Off (PTO) system from the induced-airflow by seawater oscillating inside a chamber. In general, an air chamber with a relatively small cross-sectional area is required compared to seawater chamber to obtain high-velocity air in the PTO system, and in order to simulate an accurate air flow rate in the air chamber, a three-dimensional study is required. In this study, the dynamic response of OWC-WEC that is equipped with the channel of seawater exchange for the case of irregular waves has been numerically studied. The open source CFD software, OLAFLOW for the simulation of wave dynamics to the openFOAM and FOAM-extend communities, was used to simulate the interaction between the device and irregular waves. Based on the numerical simulation results, we discussed the fluctuation characteristics of three dimensional air flow in the air-chamber, wave deformation around the structure and the seawater flow inside the channel of seawater exchange. The numerical results the maximum air flow velocity in the air-chamber increases as the Ursell value of the significant wave increases, and the velocity of airflow flowing out from the inside of air chamber to the outside is greater than the speed of flowing into the air chamber from the outside.

Hydrographic Model Test on Prevention against Vortex Occurrence for Vertical Bulb Turbine

  • Yamato, Shoichi;Nakamura, Shogo;Furukawa, Akinori
    • International Journal of Fluid Machinery and Systems
    • /
    • v.2 no.4
    • /
    • pp.418-425
    • /
    • 2009
  • A vertical bulb turbine unit with elbow type draft tube has been developed due to avoidance of complicated assembling and long standstill period at overhaul in comparison with conventional horizontal bulb turbine unit. Before designing the prototype vertical bulb unit, a hydrographic model test was carried out to establish the ideal design concept for this innovative generating unit. Froude similarity is not available for vortex occurrence. Consequently, an intake structure without air entraining vortices under all the flow conditions is developed, and it is confirmed that the surge wave at load rejection is not affected harmful influence for other constructions.

Numerical Study on the Performance of the Round Type Impactor (원형 임팩터의 성능에 관한 수치적 연구)

  • 허재영;김상수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.1
    • /
    • pp.292-298
    • /
    • 1991
  • Previous studies on the performance of the round type impactor were reexamined and extended to the case of high particle mass loading. It was pointed out that the previous numerical studies need to be supplemented in the numerical process. The impactor performance was calculated under the same conditions as previous studies by the exact calculation process and it was found out that a tail of the collection efficiency curve, which have not been found in the previous studies, appeared in the results of ours. Numerical results for high particle mass loading show that the value of the collection efficiency in the impactor decreases but better particle-cut characteristics can be obtained, as the amount of the particle mass loading increases.

Numerical prediction for the performance of a floating-type breakwater by using a two-dimensional particle method

  • Lee, Byung-Hyuk;Hwang, Sung-Chul;Nam, Jung-Woo;Park, Jong-Chun
    • International Journal of Ocean System Engineering
    • /
    • v.1 no.1
    • /
    • pp.37-45
    • /
    • 2011
  • The nonlinear free-surface motions interacting with a floating body were investigated using the Moving Particle Semi-implicit (MPS) method proposed by Koshizuka and Oka [6] for incompressible flow. In the numerical method, more realistic Lagrangian moving particles were used for solving the flow field instead of the Eulerian approach with a grid system. Therefore, the convection terms and time derivatives in the Navier-Stokes equation can be calculated more directly, without any numerical diffusion, instabilities, or topological failure. The MPS method was applied to a numerical simulation of predicting the efficiency of floating-type breakwater interacting with waves.

Analytical Study on Stall Stagnation Boundaries in Axial-Flow Compressor and Duct Systems

  • Yamaguchi, Nobuyuki
    • International Journal of Fluid Machinery and Systems
    • /
    • v.6 no.2
    • /
    • pp.56-74
    • /
    • 2013
  • Stall stagnations in the system of axial-flow compressors and ducts occur in transition from deep surge conditions to decayed or converged stall conditions. The present study is concerned with the boundaries between the deep surges and the stagnation stalls on the basis of analytical results by a code on surge transients analysis and simulation. The fundamental acoustical-geometrical stagnation boundaries were made clear from examinations of the results on a variety of duct configurations coupled with a nine-stage compressor and a single stage fan. The boundary was found to be formed by three parts, i.e., B- and A-boundaries, and an intermediate zone. The B-boundary occurs for the suction-duct having a length of about a quarter of the wave-length of the first resonance in the case of very short and fat plenum-type delivery duct. On the other hand, the A-boundary occurs for the long and narrow duct-type delivery flow-path having a length about a fifth of the wavelength and relatively small sectional area in the case of short and narrow suction ducts. In addition to this, the reduced surge-cycle frequencies with respect to the duct lengths are observed to have respective limiting values at the stagnation boundaries. The reduced frequency for the B-boundary is related with a limiting value of the Greitzer's B parameter. The tendency and the characteristic features of the related flow behaviors in the neighborhood of the boundaries were also made clearer.

Effects of supersonic condensing nozzle flow on oblique shock wave (超音速 노즐흐름에 있어서 凝縮이 傾斜衝擊波에 미치는 影響)

  • 강창수;권순범
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.3
    • /
    • pp.547-553
    • /
    • 1989
  • Last several stages of high capacity fossil power steam turbine and most stages of nuclear power steam turbine operate on wet steam. As a consequence, the flows in those cascades are accompanied by condensation, and the latent heat caused by condensation affects an oblique shock wave being generated at the vicinity of trailing of the blade. In the case of expanding of moist air through a suction type indraft wind tunnel, the effect of condensation affection the oblique shock wave generated by placing the small wedge into the supersonic part of the nozzle was investigated experimentally. In these connections, the relationship between condensation zone and reflection point of the incident oblique shock wave, angle between wedge bottom wall and oblique shock wave, and the variations of angles of incident and reflected shock waves due to the variation of initial stagnation relative humidity are discussed. Furthermore, the relationship between initial stagnation relative humidity and load working on the nozzle wall, obtained by measuring static pressure at the nozzle centerline, is discussed.