• Title/Summary/Keyword: Wave-current interactions

Search Result 31, Processing Time 0.027 seconds

The Characteristic of Wave Propagation in the Irregular Wave-current field (불규칙파.흐름 공존장에서 파랑변동특성)

  • Lee, Chang-Ho;Kim, Heon-Tae;Ryu, Cheong-Ro;Lee, In-Cheol
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.128-134
    • /
    • 2003
  • Numerical study on interactions of waves and currents has considerable practical interests in coastal and ocean engineering. And wave-current interactions strongly influence wave characteristics, current profiles, and forces on offshore structures. Presence of currents affects wave properties such as wave height and wave profiles. Furthermore, in case of the irregular waves, it is more complicated problem. The propose of present study, using the one-dimensional wave-current numerical model is based on the extended Boussinesq equation(Madsen, 1991) and an alternative form of wave-current dispersion relation(Mohiuddin, 1999, 2000) including wave action concept, is to simulate wave propagation in a current field including the irregular waves and discuss applicability of the model in a wave-current field.

  • PDF

Numerical simulation of wave and current interaction with a fixed offshore substructure

  • Kim, Sung-Yong;Kim, Kyung-Mi;Park, Jong-Chun;Jeon, Gyu-Mok;Chun, Ho-Hwan
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.8 no.2
    • /
    • pp.188-197
    • /
    • 2016
  • Offshore substructures have been developed to support structures against complex offshore environments. The load at offshore substructures is dominated by waves, and deformation of waves caused by interactions with the current is an important phenomena. Wave load simulation of fixed offshore substructures in waves with the presence of uniform current was carried out by numerical wave tank technique using the commercial software, FLUENT. The continuity and Navier-Stokes equations were applied as the governing equations for incompressible fluid motion, and numerical wavemaker was employed to reproduce offshore wave environment. Convergence test against grids number was carried out to investigate grid dependency and optimized conditions for numerical wave generation were derived including investigation of the damping effect against length of the damping domain. Numerical simulation of wave and current interactions with fixed offshore substructure was carried out by computational fluid dynamics, and comparison with other experiments and simulations results was conducted.

Analysis of Interaction of Jet-like Current and Wave using Numerical Simulation (수치모의를 통한 유사제트-파랑의 상호작용 해석)

  • Choi, Jun-Woo;Bae, Jae-Seok;Roh, Min;Yoon, Sun-Bum
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.675-678
    • /
    • 2008
  • The effect of wave and current interactions on jet-like current flowing against waves was investigated based on numerical simulations. The numerical simulations are conducted by a combined model system of REF/DIF(a wave model) plus SHORECIRC(a current model) and a Boussinesq equation model, FUNWAVE. In the simulations, regular and irregular waves refracted due to the jet-like opposing current were focused along the core region of current, and the jet-like current was earlier spreaded when the waves had larger wave heights. The numerical results show that the rapid change of wave height distribution in transverse direction near current inlet plays a significant role to spread the jet-like current. In other words, the gradients of radiation stress forcing in transverse direction have a more significant effect on the jet-like current than its relatively small gradients forcing in flowing direction, which tend to accelerate the current, do. In conclusion, it is indispensible to take into account the interaction effect of wave transformation and current characteristics when waves meet the opposing jet-like current such as river mouth.

  • PDF

Analysis on Mechanism of Wave Attenuation under Wave-Current Interaction (파랑-흐름의 상호작용에 의한 파랑변형 메커니즘 분석)

  • Lee, Woo-Dong;Hur, Dong-Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.4
    • /
    • pp.645-650
    • /
    • 2016
  • In this study, we conducted a numerical simulation using Navier-Stokes Solver (HYMO-WASS-3D) in order to analyze wave attenuation under wave-current interaction found in existing hydraulic experiments. It showed that wave energy and wave height are reduced as the wave propagates in coexisting fields between waves and currents. And the wave attenuation became more serious as the velocity of current and thus turbulence intensity were increased at wave-current coexisting field. As well, the wave attenuation became more serious with lower wave height and shorter period when the wave propagates the same distance under interactions between waves and currents.

Effects of Wave-Current Interactions on 3-D Flow Fields in a River Mouth (하구에서 파랑-흐름 상호작용이 3차원 흐름특성에 미치는 영향)

  • Lee, Woo-Dong;Jeon, Ho-Seong;Park, Jong-Ryul;Hur, Dong-So
    • Journal of Ocean Engineering and Technology
    • /
    • v.31 no.1
    • /
    • pp.36-46
    • /
    • 2017
  • Most of the studies on the hydraulic characteristics of wave-current interaction have used 2-D hydraulic experiments or 2-D numerical simulations. However, it is difficult to understand the wave-current interaction found in actual estuaries using these. Therefore, a numerical water tank was constructed in this study to perform simulations involving a 3-D river mouth. The result showed a change in the water surface at the river mouth from the wave-current interaction. With an increase in the ratio ($V_c/C_i$) between the river current and wave celerity, the wave height and mean water level of the river increased at the wave and current meeting point. A higher $V_c/C_i$ caused a stronger wave-current interaction and increased the turbulence kinetic energy. Thus, the wave height attenuation became larger by the wave-current interaction with a higher $V_c/C_i$. In addition, it was possible to understand the flow characteristics in the vicinity of the river mouth as a result of the wave-current interaction using the mean flow and mean time-averaged velocity at the mid-cross section of river.

Numerical Simulation of Irregular Wave Transformation due to Wave-induced Current over a Submerged Elliptic Shoal (수중타원형 천퇴상 불규칙파의 파랑쇄파류에 의한 변형 수치모의)

  • Choi, Jun-Woo;Baek, Un-Il;Yoon, Sung-Bum
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.19 no.6
    • /
    • pp.565-573
    • /
    • 2007
  • The effect of wave and current interactions on irregular wave transformation over a submerged elliptic shoal is investigated based on numerical simulations of the Vincent and Briggs experiment [Vincent, C.L., Briggs, M.J., 1989. Refraction-diffraction of irregular waves over a mound. Journal of Waterway, Port, Coastal and Ocean Engineering, 115(2), pp. 269-284]. The numerical simulations are conducted by a combination of REF/DIF S(a wave model) and SHORECIRC(a current model) and a time dependent phase-resolving wavecurrent model, FUNWAVE. In the simulations, the breaking-induced currents defocus waves behind the shoal and bring on a wave shadow zone that shows relatively low wave height distributions. The computed results of the combined model system agree better with the measurements than the computed results obtained by neglecting wave-current interaction do. In addition, the results of FUNWAVE show a good agreement with the measurements. The agreement indicates that it is necessary to take into account the effect of breaking-induced current on wave refraction when wave-breaking occurs over a submerged shoal.

WAVE-CURRENT INTERACTIONS IN MARINE CURRENT TURBINES

  • Barltrop, N.;Grant, A.;Varyani, K.S.;Clelland, D.;Pham, X.P.
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.80-90
    • /
    • 2006
  • The influence of waves on the dynamic properties of bending moments at the root of blades of tidal stream vertical axis rotors is reported. Blade theory for wind turbine is combined with linear wave theory and used to analyse this influence. Experiments were carried out to validate the simulation and the comparison shows the usefulness of the theory in predicting the bending moments. The mathematical model is then used to study the importance of waves for the fatigue design of the blade-hub connection.

  • PDF

Numerical Simulation of Jet-like Currents Influenced by Irregular Waves (불규칙 파랑의 영향을 받는 유사제트류의 수치모의)

  • Choi, Jun-Woo;Park, Won-Kyung;Bae, Jae-Seok;Yoon, Sung-Bum
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.20 no.5
    • /
    • pp.491-497
    • /
    • 2008
  • The effect of wave and current interactions on jet-like current flowing against waves was investigated based on numerical simulations. The numerical simulations were conducted using a model system of REF/DIF(a wave model) and SHORECIRC(a current model). In the simulations, irregular waves refracted due to the jet-like opposing current were focused along the centerline of current, and the jet-like current was spreaded earlier when the wave heights become larger. The numerical results show that the rapid change of wave height distribution in transverse direction near current inlet plays a significant role to spread the jet-like current. In other words, the radiation stress gradients acting in transverse direction have a more significant effect on the jet-like current than its gradients acting in flowing direction which tend to accelerate the current do. In conclusion, it is indispensible to take into account the interaction between waves and current when the jet-like current such as river mouth meets opposing waves.

Development of a 3-D Coupled Hydro-Morphodynamic Model between Numerical Wave Tank and Morphodynamic Model under Wave-Current Interaction (파랑-흐름의 상호작용 하에서 지형변동에 관한 3차원 연성 수치모델의 개발)

  • Lee, Woo-Dong;Hur, Dong-Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.5
    • /
    • pp.1463-1476
    • /
    • 2014
  • In order to understand hydrodynamic and morphodynamic characteristics under wave-current interactions in an estuary, a coupled model for two-way analysis between existing 3-d numerical wave tank and newly-developed 3-d morphodynamic model has been suggested. Comparing to existing experimental results it is revealed that computed results of the newly-suggested model are in good agreement with each laboratory test result for wave height distribution, vertical flow profile and topographical change around ocean floor pipeline in wave-current coexisting field. Also the numerical result for suspended sediment concentration is verified in comparison with experimental result in solitary wave field. Finally, it is shown that the 3-D coupled Hydro-Morphodynamic model suggested in this study is applicable to morphological change under wave-current interaction in an estuary.

Numerical Simulation of Regular Wave Transformation due to Wave-induced Current over a Submerged Elliptic Shoal (수중타원형 천퇴를 통과하는 규칙파의 파랑쇄파류에 의한 변형)

  • Choi, Jun-Woo;Baek, Un-Il;Yoon, Sung-Bum
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.19 no.6
    • /
    • pp.557-564
    • /
    • 2007
  • The effect of wave and current interactions on regular wave transformation over a submerged elliptic shoal is investigated based on numerical simulations of the Vincent and Briggs experiment [Vincent, C.L., Briggs, M.J., 1989. Refraction-diffraction of irregular waves over a mound. Journal of Waterway, Port, Coastal and Ocean Engineering, 115(2), pp. 269-284]. The numerical simulations are conducted by constituting two numerical model systems: a combination of SWAN(a wave model) plus SHORECIRC(a current model) and a combination of REF/DIF 1(a wave model) plus SHORECIRC. A time dependent phase-resolving wave-current model, FUNWAVE, is also utilized to simulate the experiment. In the simulations, the breaking-induced currents defocus waves behind the shoal and bring on a wave shadow zone that shows relatively low wave height distributions. The computed results of the two model systems agree better with the measurements than the computed results obtained by neglecting wave-current interaction do. However, it is found that the radiation stresses for standing waves are misevaluated in the wave models. In addition, the results of FUNWAVE show very good agreement with the measurements. The agreement indicates that it is necessary to take into account the effect of breaking-induced current on wave refraction when wave-breaking occurs over a submerged shoal.