• Title/Summary/Keyword: Wave train

Search Result 267, Processing Time 0.033 seconds

Effect of Train Nose Shape on the High-Speed railway Tunnel Entry Compression Wave (고속열차의 선두부 형상이 터널 입구압력파에 미치는 영향)

  • 김희동;김태호;서태원
    • Proceedings of the KSR Conference
    • /
    • 1998.05a
    • /
    • pp.596-603
    • /
    • 1998
  • The entry compression wave, which is generated at the entrance of the tunnel, is almost always associated with the pressure transients in the tunnel as well as the impulse noise at the exit of the tunnel. It is highly required to design the train nose shape that can minimize such undesirable phenomena. The objective of the current work is to investigate the effects of the train nose shape on the entry compression wave. Numerical computations were applied to one-dimensional unsteady compressible flow in high-speed railway train/tunnel systems. A various shape of train noses were tested for a wide range of train speeds. The results showed that the strength of the entry compression wave is not influenced by the train nose shape, but the time variation of pressure in the entry compression wavefront is strongly related to the train nose shape. The current method of the characteristics was able to represent a desirable nose shape for various train speeds. Optimum nose shape was found to considerably reduce the maximum pressure gradient of the entry compression wave.

  • PDF

Experimental Study of Deep-Water Wave Instability : Part 2. Evolution of The Initially-Modulated Wave Train (심해파의 불안정성에 관한 실험 연구 -제2부 : 초기변형파의 불안정성)

  • Cho, Won Chul
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.1
    • /
    • pp.203-211
    • /
    • 1993
  • Experiment on the instability and breaking of the initially modulated deep-water wave train (in wave amplitude or in wave frequency) is performed to investigate the effect of the initial modulation on nonlinear wave evolution. Wave amplitude and frequency modulations are developed earlier and larger than in the case of the uniform deep-water wave trains. However, for small wave steepness in the initially amplitude-modulated wave train, the wave train becomes demodulated and nearly returns to the original wave form at the end of the wave evolution far downstream from the breaking region, with energy returning to the fundamental wave frequency.

  • PDF

NUMERICAL STUDY ON THE COMPRESSION WAVE GENERATED BY THE TRAIN ENTERING A TUNNEL (열차가 터널에 진입할 때 발생하는 압축파에 대한 수치해석 - 열차의 출발방법 및 터널과의 거리에 대한 영향)

  • Kim, S.R.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2006.10a
    • /
    • pp.189-192
    • /
    • 2006
  • The numerical simulations on the train entrering a tunnel were performed by solving unsteady axi-symmetric problems. To reduce the effects of the pressure wave generated by the train starting abruptly, several starting method of the train were also examined. The pressure rise by the train entering a tunnel was compared with other results, and similar value was obtained compared with those of previous studies.

  • PDF

Characteristics of High-Speed Railway Tunnel Entry Compression Wave (고속철도 터널입구에서 형성되는 압축파의 특성에 관한 연구)

  • Kim, Heuy-Dong;Kim, Tae-Ho;Lee, Jong-Su;Kim, Dong-Hyeon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.2
    • /
    • pp.234-242
    • /
    • 1999
  • Flow phenomena such as the pressure transients Inside a high-speed railway tunnel and the Impulsive waves at the exit of the tunnel are closely associated with the characteristics of the entry compression wave, which is generated by a train entering the tunnel. Tunnel entrance hood may be an effective means for alleviating the Impulsive waves and pressure transients. The objective of the current work is to explore the effects of the train nose shape and the entrance hood on the characteristics of the entry compression wave. Numerical calculations using the method of characteristics were applied to one-dimensional, unsteady, compressible flow field with respect to high-speed railway/tunnel systems. Two types of the entrance hoods and various train nose shapes were employed to reveal their influences on the entry compression wave for a wide range of train speeds. The results showed that the entry compression wave length increases as the train nose becomes longer and the train speed becomes lower. The entry compression wave length in the tunnel with hood becomes longer than that of no hood. Maximum pressure gradient in the compression wavefront reduces by the entrance hood. The results of the current work provide useful data for the design of tunnel entrance hood.

Characteristics of East Asian Cold Surges in the CMIP5 Climate Models (CMIP5 기후 모형에서 나타나는 동아시아 한파의 특징)

  • Park, Tae-Won;Heo, Jin-Woo;Jeong, Jee-Hoon;Ho, Chang-Hoi
    • Atmosphere
    • /
    • v.27 no.2
    • /
    • pp.199-211
    • /
    • 2017
  • The cold surges over East Asia can be grouped to two types of the wave-train and the blocking. Recently, the observational study proposed new dynamical index to objectively identify cold surge types. In this study, the dynamical index is applied to the simulations of 10 climate models, which participate in the Coupled Model Intercomparison Project Phase 5 (CMIP5). Focusing on assessment of cold surge simulation, we discuss characteristic of the wave-train and blocking cold surges in the climate models. The wave-train index (WI) and the blocking index (BI) based on potential temperature anomalies at dynamical tropopause over the subarctic region, the northeast China, and the western North Pacific enable us to classify cold surges in the climate models into two types. The climate models well simulate the occurrence mechanism of the wave-train cold surges with vertical structure related to growing baroclinic wave. However, while the wave-train in the observation propagates in west-east direction across the Eurasia Continent, most of the models simulate the southeastward propagation of the wave-train originated from the Kara Sea. For the blocking cold surges, the general features in the climate models well follow those in the observation to show the dipole pattern of a barotropic high-latitude blocking and a baroclinic coastal trough, leading to the Arctic cold surges with the strong northerly wind originated from the Arctic Sea. In both of the observation and climate models, the blocking cold surges tend to be more intense and last longer compared to the wave-train type.

Aerodynamic Analysis of a Train Running in a Tunnel(I)-Aerodynamics of One-Train- (터널내를 주행하는 열차의 공기역학적 해석(I)-1열차의 공기 역학-)

  • Kim, Hui-Dong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.8
    • /
    • pp.963-972
    • /
    • 1997
  • As a high-speed train enters a tunnel, a compression wave is generated ahead of it due to the piston action of train. The compression waves propagate along the tunnel and reflect at the exit of tunnel. A complex wave phenomenon appears in the tunnel, because of the successive reflections of the pressure waves at the exit and entrance of tunnel. The pressure waves give rise to large pressure transients which impose the fluctuating loads on the running train. It is highly needed that the pressure transients should be predicted to design the train body and to improve the comfortableness of the passengers in the train. In the present study, the pressure transients were calculated numerically for a wide range of train speed and compared with the previous tunnel tests. The calculation results agreed with ones of the tunnel tests, and the mechanism of pressure transients was made clear.

Aerodynamic Analysis of a Train Running in a Tunnel(II)-Aerodynamics of Two-Trains- (터널내를 주행하는 열차의 공기역학적 해석(II)-2열차의 공기역학-)

  • Kim, Hui-Dong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.8
    • /
    • pp.983-995
    • /
    • 1997
  • As a high-speed train enters a tunnel, a compression wave is generated ahead of it due to the piston action of train. The compression waves propagate along the tunnel and reflect backward at the exit of tunnel. A complex wave phenomenon appears in the tunnel, because of the successive reflections of the pressure waves at the exit and entrance of tunnel. The pressure waves can give rise to large pressure transients which impose the fluctuating loads on the running train. It is highly needed that the pressure transients should be predicted to design the train body and to improve the comfort for the passengers in the train. In the present study, the pressure transients and aerodynamic drag for two-trains running in a tunnel were calculated numerically for a wide range of train speed, and compared with the results of the previous tunnel tests and calculations for one train. The present calculation results agreed with ones of the tunnel tests, and the mechanism of pressure transients was made clear.

A Numerical Study on the Compression Wave Generated by the Train Entering a Tunnel - Effects of the Start Method of a Train - (열차가 터널에 진입할 때 발생하는 압축파에 대한 수치해석 -열차의 출발방법에 따른 영향에 대한 고찰 -)

  • Kim, Sa-Ryang
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.12
    • /
    • pp.1039-1046
    • /
    • 2006
  • The numerical simulations on the train entering a tunnel are performed by solving unsteady axi-symmetric problems. To reduce the effects of the pressure wave generated by the train starting abruptly, several starting methods of the train are examined. The high order velocity increase gives better results than those for the linear velocity increase. The high order velocity increase gives good results for the pressure rise by the train entering a tunnel, too. The distance to the train reaches the highest running velocity from the start should be more than 60 m when the train speed is 350 km/h.

Approximate Optimization of High-speed Train Shape and Tunnel Condition to Reduce the Micro-pressure Wave (미기압파 저감을 위한 고속전철 열차-터널 조건의 근사최적설계)

  • Kim, Jung-Hui;Lee, Jong-Soo;Kwon, Hyeok-Bin
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1023-1028
    • /
    • 2004
  • A micro-pressure wave is generated by the high-speed train which enters a tunnel, and it causes explosive noise and vibration at the exit. It is known that train speed, train-tunnel area ratio, nose slenderness and nose shape mainly influence on generating micro-pressure wave. So it is required to minimize it by searching optimal values of such train shape factors and tunnel condition. In this study, response surface model, one of approximation models, is used to perform optimization effectively and analyze sensitivity of design variables. Owen's randomized orthogonal array and D-optimal Design are used to construct response surface model. In order to increase accuracy of model, stepwise regression is selected. Finally SQP(Sequential Quadratic Programming) optimization algorithm is used to minimize the maximum micro-pressure wave by using built approximation model.

  • PDF

Numerical Simulation on the Pressure Wave by a High Speed Train Passing through a Tunnel (고속철도 터널에서 발생하는 풍압에 관한 수치해석)

  • Park, Jun;Kim, Hyo-Geun;Lee, Sang-Pil;Ha, Hee-Sang;Yoon, Sung-Wook
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.1674-1680
    • /
    • 2011
  • As the speed of train increases, the effects of the pressure wave generated by the train are becoming more important. To calculate characteristics of the pressure wave generated by a high-speed train passing through a tunnel, several methods are simulated. The pressure waves give rise to large pressure transients which impose the fluctuating loads on the train. It is highly that the pressure transients should be predicted to design the tunnel size and to improve the comfortableness of passengers. In this study, the pressure transients were numerically simulated for a wide range of train speed and compared with the previous verified paper. The simulation results were agreed with the paper, and the characteristics of pressure wave made clear.

  • PDF